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The study of diffuse X-rays in the energy region below 1 KeV has had

a somewhat rocky past and has suffered from having attracted cosmological

interest early in its young life. Much of the available data and inter-

pretation can be found in recent review articles by Silk (1973), Felten

(1972), Field (1972) and Kato (1972). In this short review I cannot discuss

all the measurements or all the ideas that have been put forward. I will,

therefore, restrict my discussion to a description of those features of the

low energy diffuse flux on which there is general observational agreement

and to some interpretive matters which I believe have been overlooked or at

least underemphasized. Also, most of the discussion will be restricted to

the energy region below 280 eV, the Carbon K edge.

I. Intensity

The soft X-ray diffuse intensity is everywhere convincingly larger than

would be expected from an extrapolation of the high energy isotropic,

unabsorbed and almost certainly extragalactic power law spectrum. Data in

support of this conclusion are shown in Figures 1 and 2, taken from papers

by the Wisconsin (Bunner et al., 1971) and NRL (Davidsen et al., 1972)

groups. The solid curves in both figures are the predicted proportional:

counter response given only the high energy power law spectrum, with no

interstellar absorption, as an input spectrum. The prominent bumps in these

curves result from the X-ray transmission edges of the counter windows. The

intensity ratio, pole to plane, is about 3 to 1 and while there can be some

argument about a possible extragalactic contribution to the high latitude

intensity, the plane intensity must be of relatively local origin because

the column density for unit optical depth is only 2.5 x TO1020 atoms/cm2 or

about 200 pc (with n = 0.4 atoms/cm 3) in these directions.
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II. Spatial Structure

The soft X-ray intensity shows three broad classes of spatial

structure.

First, there is the gross tendency for the intensity to be small in

the galactic plane and enhanced by perhaps a factor 3 at high northern

galactic latitudes. This is shown in Figures 3 and 4, surveys of the NRL

(Davidsen et al., 1972) and Wisconsin (Bunner et al., 1972), (Williamson,

F. W., 1973), (Sanders, W., 1973) groups. The polar enhancement is more

obvious in the north than in the south, although there are some isolated

line scans that make the case for apparent enhancement in the south more

convincing (Bunner et al., 1969, 1971), (Garmire and Riegler, 1972).

Next, the soft X-ray intensity is by no means just a simple function

of galactic latitude, nor is it correlated, except the grossest sense, with

the column density of interstellar hydrogen gas. There are large high

intensity spatial features. None of these features except the North Polar

Spur appear to correlate well with other astrophysical phenomena. Figure

5, taken from part of the Wisconsin survey (Bunner et al., 1972) shows

soft X-ray counting rate versus time along the scan path, plotted together

with estimated expected transmission. The bands on the time axes coincide

with the North Polar Radio Spur and approximately, it is seen, with regions

of enhanced X-ray intensity. Notice that there is little if any detailed

correlation of X-ray intensity with gas transmission. This, together with

the observed large intensity in the galactic plane, is strong evidence that

much of the soft X-ray emission originates within the bounds of the galaxy's

interstellar gas.

Third, there are at least three soft X-ray emitting regions of small

angular extent, Puppis-A and Vela X (Palmieri et al., 1971) (Grader et al.,

1970) and the Cygnus Loop (Seward et al., 1971). Three others have been
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reported, but to date have not been confirmed. The three confirmed sources

are all supernova remnants, are at small galactic latitudes and are of a

class not numerous enough to account for the entire diffuse background. Of

course, one or a few nearby remnants would be of large angular extent and

confuse our whole picture. But galactic loop structures, aside from the

North Polar Spur, do not appear to be strong soft X-ray emitters. Incidently,

the observation of soft X-ray emission from near the North Polar Spur has

not been confirmed by others. Only one other observation near the Spur has

been reported, but the sensitivity level is not clear (Hayakawa et al., 1972).

III. Nature of the Local Emission

The nature of the local emission remains a mystery. Particularly

puzzling is the relative constancy of the intensity in the galactic plane.

Near k = 2400, for example, OAO-Lyman-a observations (Savage and Jenkins,

1972) show there to be very small gas column densities out to several

hundred parsecs. Similarly the 21 cm emission profiles in this region show

little or no low-velocity gas. Yet the soft X-ray intensity near II =

2400 appears featureless. If the emission in the plane were from a more-or-

less uniformly-distributed population of stars, the soft X-ray intensity,

one would think, would be large where the local absorbing gas density is

small. Early type stars, it is true, are relatively rare in this region.

Also puzzling is the relation between the soft X-ray intensities

measured in the E < 180 eV (Boron K edge filter) and E < 280 eV (Carbon K

edge filter) regions (Bunner et al., 1973). X-rays of E < 180 eV are more

strongly attenuated by absorbing material. Thus in Figure 6 I show the

rates in the two types of detectors measured while the detectors were holding

on a fixed high latitude point as the rocket emerged from the Earth's

atmosphere. As expected the rates are not proportional to each other, but
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the Boron filter rate changes more rapidly than the Carbon K filter rate.

Yet when these two detectors scanned about the sky while free of atmospheric

absorption, the two rates show no systematic tendency that would suggest

that intensity variations are due to simple variation in amount of absorbing

material between source and detector. Apparently emission irregularities

dominate spatial absorption features. Sometimes variations in the Carbon K

filter rates are accompanied by proportional variations in the Boron K

filter rates. This behavior is to be expected if diffuse X-ray emission and

absorption are in equilibrium along the line of sight, or if the emission is

so local that there is little (or at least constant) absorption in different

directions.

Lack of confirmed discrete point sources of soft X-rays (Bunner et al.,

1969) and the apparent granularity of the spatial structure of the diffuse

flux (Gorenstein and Tucker, 1972) suggest that if the source is stars of a

special type, their local space density must be large, > 10 2 (pc)- 3 or more

than 1 in 10 of all known stars.

In our first publication on this subject (Bunner et al., 1969), we

suggested a population of stars with a scale height larger than that of the

gas as a possible source of the soft diffuse X-rays. The model provides the

enhanced intensity at high galactic latitudes, a source of the galactic plane

emission and requires no extragalactic component. At energies between 0.5

and 1 KeV, however, the model predicts an enhanced intensity at intermediate

galactic latitudes where absorption by the interstellar gas has not yet

dominated the effect of increased path length through the emitting region.

This enhanced intensity is not observed. The model has been discussed in

more detail by several other authors (Gorenstein and Tucker, 1972), (Garmire

and Riegler, 1972), (Davidsen et al., 1972), (Kato, 1972), (Hayakawa, 1972).
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Emission by the interstellar gas itself would appear to provide a

reasonable model for the origin of the diffuse X-rays in the galactic

plane, for the absorption optical depth in the plane is large at whatever

longitude. X-ray emission is a very inefficient process when compared with

ionization, however, and the resulting heating of the cool interstellar

medium, if the X-rays are produced in the gas, cannot be accommodated even

if a suitable charged particle source is postulated ad hoc (Bunner et al.,

1971). A multi-component interstellar medium requires further study as far

as X-ray-emitting possibilities are concerned. Emission by the interstellar

gas or by objects with the same spatial distribution as the gas, results in

an intensity proportional to (l-e-T), where T is the absorption optical

depth. To match the observations, therefore, an extragalactic component is

required and there results a net intensity proportional to A + Be - . This

same form of the intensity dependence on T results from the assumption of

extragalactic plus isotropic unabsorbed components, as discussed by Davidsen

et al. (1972).

IV. Extragalactic Component?

Because of possible cosmological significance, there has been a

persistent desire to have at least a large portion of the high latitude

diffuse soft X-ray flux be interpreted as extragalactic in origin. The point

is simply that the lack of red-shifted Lyman-a absorption in the spectra of

quasars puts severe limits on the density of a possible intergalactic

un-ionized gas. Hence, if the universe is closed, it is argued, the

required mass must be in hot ionized gas since the observed average density

of mass in the form of galaxies is small by a factor of about 60. Extra-

galactic soft X-rays would provide a possible indicator of this hot gas.

Or, turning the argument around, a demonstrated lack of extragalactic soft
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X-rays would put limits on the possible density and temperature of a

postulated hot intergalactic medium (Field, 1972), (Field and Henry, 1964).

The observed X-ray intensity enhancement toward the galactic poles,

where the gas density is small and expected X-ray transmission is large,

suggests but by no means demonstrates an extragalactic origin. In the

first place, the sources could be mingled with or just outside the galactic

gas. In the second place, the correlation of intensity with expected gas

transmission is poor. Of course, there are several possible causes for

this poor correlation. Transmissions are deduced from 21 cm hydrogen

emission measurements and helium, not hydrogen, is responsible for most of

the soft X-ray absorption (Brown and Gould, 1970). There could be an

unsuspected number of small unresolved cool clouds of gas and these would

confuse both the column density measurement and X-ray transmission estimates.

These rationalizations would be comforting if we had prior knowledge of

extragalactic soft X-rays, and knew there to be no high latitude galactic

emission. But the reverse logic provides a decidedly weak case (if any)

for a hot intergalactic medium.

We hoped our search for absorption by the gas of the Small Magellanic

Cloud would clarify these matters. Before making the observation we

decided among ourselves that the most unsatisfactory result possible would

be an X-ray intensity that was constant as we scanned across the SMC, for

then neither emission nor absorption by the SMC would be clearly demonstrated.

That, of course, is exactly what happened (McCammon et al., 1971) as shown

in Figure 7.

Given this apparent lack of absorption the the SMC, we cannot exclude

an extragalactic soft X-ray intensity, Jo, that is just compensated by

emission from the cloud itself. The consequences of this assumption,

however, are rather interesting. Let S be the X-ray emission rate per nucleon
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of stellar matter in the SMC and ns and ng be the smoothed out or average

nucleon density of stars and gas, respectively. Then if emission and

absorption just compensate

J ang = S ns

where a is the X-ray absorption cross-section per hydrogen atom (Brown and

Gould, 1970). The contribution to the extragalactic intensity from all

galaxies out to a distance C is then

J c no S

where no is the average density of galactic matter. According to Noonan

(1971), po for H = 50 km s-1 Mpc "I is 7.5 x 10- 3 2 g cm- 3 so no is % 4.2 x

-8 -3
10 cm . We then have

o s SMC

In the SMC (n /n s ) is about 0.5, so JG/J o is about 0.8. In short, if we

attempt to save the hot intergalactic medium by supposing that the lack

of absorption by the SMC results from self-emission, the entire or at

least a large part of the supposed extragalactic soft X-ray intensity arise

from the superposed emission from other galaxies. There is then little or

no intensity left to be accounted for by the hot gas.

If instead we suppose the emission to be somehow proportional to the

gas of the SMC and proportional to the gas in other galaxies too, with the

same emissivity, the value of JG/Jo is reduced by a factor of perhaps 10.

This is because we estimate the ratio of gas mass to star mass in the SMC

to be about 10 times that of other galaxies.
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Figure 8 shows how the SMC measurement and measurements of the

diffuse background radiation at higher X-ray energies restrict the

temperature of a hot intergalactic gas. This is essentially Figure 1

of Field and Henry (1964), but a Hubble constant Ho = 50 km sec - Mpc "1

has been assumed rather than 100. The density assumed is sufficient to

just close the universe (=l1), the clumping factor (C = n2/n ) is taken

as l,the integration is carried out only to Z=l, and the expansion is

assumed to proceed with y=5/3.

As pointed out by Field (1972) the measured intensities in a real

universe with a given TO must exceed those plotted. Because the SMC

measurement falls so near the "Big Bang Envelope" line, it in fact (with

Ho = 50) excludes very little -- only a band of temperatures near (2 x 106)OK

On the other hand, and this is the point I wish to emphasize, the diffuse

soft X-ray measurements cannot, taken alone, be said to provide positive

evidence for a hot dense intergalactic medium.
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Figure Captions

Figure 1 Proportional counter pulse height spectra near the galactic

plane and at a high galactic latitude. From Bunner et al. (1971).

Figure 2 Pulse height data taken with Kimfol and Teflon counter windows.

From Davidsen et al. (1972).

Figure 3 Spatial distribution of X-rays of E < 280 eV. The coordinate

system is centered at the galactic anti-center. From

Davidsen et al. (1972).

Figure 4 Spatial distribution of X-rays of E < 280 eV. The upper

coordinate system is centered at the galactic center, while the

lower coordinate system is centered at the galactic anti-

center. From Bunner et al. (1972), Williamson (1973) and

Sanders (1973).

Figure 5 Counting rate of soft X-rays and X-ray transmission vs. time

along the scan path. Data from Bunner et al. (1972).

Figure 6 Counting rate of E < 180 eV X-rays vs. rate of E < 280 eV X-rays.

Data from Bunner et al. (1973).

Figure 7 X-ray counting rate of X-rays (E < 280 eV) in directions near

the Small Magellanic Cloud. Solid calculated curves assume in

A: absorption by galactic and SMC gas; B: absorption by SMC gas

only; C: absorption by galactic gas only; and D: extrapolated

power law spectrum extragalactic; rest of local origin. From

McCammon et al. (1971).

Figure 8 Predicted X-ray intensities from a hot intergalactic medium with

density sufficient to close the universe. From Field and Henry

(1964).
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INTRODUCTION

This paper will discuss observational results on the diffuse X-ray

background between 2 and about 200 keV. Appropriately to the

sponsorship of this symposium by the Laboratory for Theoretical

Studies;'we wish to present the results in a form suitable for

theoretical discussion; namely, the volume emissivity function

B (E) [ergs/sec Mpc 3 keV emitted at energy E ] . The prescription

for this is first to establish the spectral intensity I (E) [ergs/sec

cm2 ster keV ] measured at the earth, second to subtract the

contribution due to known, discrete sources, and third to unfold

the equation

I (E) -B E dI (1)

which relates the measured intensity to the emissivity.

We may summarize the important characteristics of the diffuse X-ray

background on which there is general agreement:

1. A real, cosmic X-ray background exists, which may be truly

diffuse or merely composed of discrete sources not yet

resolvable. Nothing in this paper will depend on which of

those two pictures one adopts.

2. The diffuse X-rays are apparently isotropic over the sky, at

least to an extent which precludes a galactic origin.
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3. All detailed theories have difficulty accounting for the

production of the measured energy into the diffuse spectrum,

in the sense that they must hypothesize a rate of electron

production, of heating, or of cosmological evolution which

is not otherwise observed.

Strictly speaking these three characteristics apply only to the

energy range between 2 and 40 keV where the isotropy over the

entire sky has been established by the X-ray experiments aboard

the Uhuru and OSO-III satellites.

II. EXPERIMENTAL PROCEDURES

The measurement of the precise spectral flux density of an

isotropic diffuse background is extremely difficult. The

experimental problem is to determine, as a function of energy,

what fraction of the instrumental output is due to internal back-

ground, whereby the term "internal" we mean the output which

the instrument would have if no diffuse X-rays within the nominal

bandwith entered the aperture. Internal background is also

called "non-X-ray background, " although in fact X-rays leaking

from outside the aperture, or higher energy X-rays which interact

with only a partial energy loss both may contribute to internal

background. Cosmic rays and geomagnetic particles are the

primary ultimate sources of background.

Several basic techniques have been used for estimating internal



background:

1. The earth, assumed to emit no X-rays, has been used as a

"shutter" and the entire instrument output obtained when

the earth filled the field of view was assumed to be internal;

2. A physical shutter opaque to X-rays has been flown, which

either was moved into and out of place over the aperture or

else used to cover one of several identical detectors;

3. Different collimator solid angles have been flown, again

either by motion of a shutter over one detector or fixed col-

limators, over several identical detectors.

The satellite experiments have allowed an additional technique;

4. Observation of the modulation of the internal background as

a function of varying geomagnetic conditions, whereby it can

be separated from the constant isotropic X-rays.

By and large, all the above techniques are adequate to give what

might be considered "first-order" accuracy by astrophysical

standards (i.e., within 25% to 50% errors). However, the photon

counting statistics formally imply a much higher precision: for a

conservative example, a 200 second rocket flight might count
-I

diffuse X-rays at a rate of 25 sec-1, and accumulate 5000 counts

between 2 and 10 keV. With statistical errors of only a few per-

cent, the following inadequacies of internal background estimation

(numbered to correspond to the techniques listed above) become



apparent:

1. Below 10 keV the earth may sporadically emit X-rays due to

auroral type events. Above about 30 keV the atmospheric

albedo becomes comparable to the diffuse X-ray background.

2. X-rays may be generated by interactions in a mechanical

shutter, and produce counts which would not be present

when the aperture is open.

3. Data may be contaminated by diffuse geomagnetic electronswhich

appear identical to diffuse X-rays. For example, an electron

of about 70 keV will on the average penetrate a 1 mil Be

window with a few keV residual energy. However, because

straggling is a dominant effect for sub-relativistic electrons

a wide bandwidth (say 50-100 keV) of incident electrons might

be able to contribute counts in the few keV range.. These

electrons are time variable, either trapped or precipitating,

and may occasionally be found even on the L=I magnetic

shell (Schwartz, 1969). Electron fluxes far smaller than are

significant for geomagnetic studies, of the order of 0. 01 (cm 2 sec

ster keV) - 1 at 70 keV, can contribute a few percent of the dif-

fuse X-ray counting rate. The existence of electrons of about

10 keV as a severe, sporadic contaminant to 1/4 keV X-rays

has been well known (Hill et al., 1970); however, the effect

at higher energies in any given rocket flight has generally

been ignored.



4. A truly constant internal background component; for example,

radioactivity within the detector or vehicle, will not be

modulated as a function of geomagnetic conditions.

The reality of effects 1 and 3 as significant considerations for

observations between 7 and 40 keV was first shown by the OSO-III

experiment. Even when the internal background is measured

perfectly accurately, it may simply change between the time it

is estimated and the time when diffuse X-ray data is taken. Such

changes may be due to motion of the vehicle in space, a change

in orientation of the X-ray telescope axis relative to the earth's

atmosphere or earth's magnetic field, a change in the

configuration of matter around the detector, or temporal changes

associated with geomagnetic activity. Table 1 summarizes these

background considerations, along with the principal method used

and the most likely source of remaining systematic error.

To stress the difficulty of the absolute measurement of a diffuse

spectral density, we may digress to a familiar example from the

study of the universal microwave background. In radio astronomy

an absolute flux is usually presented as the equivalent Rayleigh-

jeans blackbody temperature. Figure 1 illustrates the derivation



7

of the microwave temperature at 3. 2 cm by Roll and Wilkinson

(1966). Briefly, that experiment used a Dicke-type radiometer

which measured the difference between an antenna horn pointed

at the sky, and a cold load maintained near liquid helium

temperature. The top bar represents the measured cold load

effective temperature. Each lower bar represents the result

after applying the correction listed. The key feature here is

that most of the corrections are of the same magnitude as the

final result, and therefore must be known to the same precision

desired for the microwave background. This experiment reported

T = 3. 0 + 0. 5 OK, where the error represents an estimate of

systematic effects. This 0. 5 OK error should be compared to a

standard error of 0. 06 OK which the authors derived due to the

random errors in each correction term. In general, only such

random errors are reported for measurements of the X-ray back-

ground.

The generalizations discussed above, and the examination of

the data presented below, has led us to adopt the following

point of view: Most measurements of the flux density at various

energies are reliable -- they can be taken at face value with

their quoted errors and compared with other results. However,

direct measurements of a so-called "spectrum" by a single

experiment are much less reliable or useful. The unreliability



results because the uncertain systematic errors invariably are a

different function of the energy than the diffuse X-rays. Thus,

one or a few data points at one end of the energy range covered

by a given experiment systematically distort the overall spectrum,

even if many other spectral points are quite accurate. The use-

fulness of a spectral parameter is minimal for the following

reasons: first, information is lost by reporting a few spectral

parameters instead of many flux density measurements at various

energies; second, the non-linear least squares fits which must

be used (due to the complicated spectral response of the typical

detectors) do not necessarily give unbiased estimates of the

spectral parameters; third, the procedure starts by assuming a

general form for the spectrum, such as power law or exponential

shape; finally, it is not obvious how to combine spectral

parameters from two different experiments spanning slightly

different energy ranges -- especially when each of those results

has an estimated error which excludes the other. The spectral

parameters which we will present below should be interpreted

first of all as merely giving a numerical representation of all

the data, although one should certainly discuss the physical

interpretation of any spectral representation.

III. Observational Results

Figure 2 presents a selection of published flux density points



for the diffuse X-rays between 2 and 200 keV. The plot gives the

energy flux in keV/keV cm2 sec ster. Results reported only by

giving spectral parameters are not included. Points with reported

relative errors larger than 30%, and estimates of upper limits, are

also excluded. In general, only the latest results of a given

group are shown. Although the points with the smallest error

bars tend to be hidden in such a plot, we can see that the bulk of

the points do fall within a + 50% error band, and therefore we may

expect the precision of the mean to be still higher. The balloon-

borne measurements shown here (except for Manchanda et al. 1972)

do not contain additional so-called "Compton scattering"

corrections, for reasons discussed below. The total data suggest

a gradual steepening of the spectrum from a few keV up to 100 keV --

detailed analysis of several of the experiments confirms this

conclusion.

a) Rocket-borne Observations

The key feature of rocket experiments is that they generally

operate in the "cleanest" environment with regard to internal

background. They are above the secondary cosmic radiation

produced in the earth's atmosphere, and below trapped

particle populations. (Sporadic electron precipitation events

may still affect any one observation.) The major drawback is

that the observation lasts at most a few minutes. Thi s usually



does not allow, for example, a program which alternates

measurements of diffuse and internal background to verify

that the latter is constant.

Consider first the proportional counter observations shown

in Figure 2 (LLL: Palmieri et al. 1971; ASE: Gorenstein et al.

1969; GSFC: Boldt et al. 1969; PRL: Prakasarao et al. 1971).

In this energy range, 2 to 10 keV, shielding and collimation

is easily done with passive structural elements. The fields

of view used range from 20 square degrees in the LLL

experiment (shown as the eight largest diamonds between

2.4 and 8. 7 keV) to 500 square degrees by GSFC. The PRL

measurement was carried out at the geomagnetic equator,

the GSFC and ASE flights from White Sands occurred at a

magnetic shell of approximately L = 1. 7 to 1. 8. The PRL

counters were filled with a xenon/methane mixture, the

others with an argon/methane. ASE and LLL determined

internal background with a rocket door closed, PRL while

looking at the earth, and GSFC by having a movable shutter

which gave five different solid angles between 0.125 and

0.17 ster as well as a completely occulted position.

Agreement among the various experiments is rather good.

This may be expected, since proportional counters generally

have several hundred cm2 areas, and since the X-ray flux



is constantly increasing to the lowest energies. The signal to

background ratios obtained were between 3 and 10 to one.

We have omitted two results which suggested spectral line

features in the background around 5 and 7 keV (Ducros et al.

1970; Henry et al. 1971). Boldt et al. (1971) have reported an

upper limit for such a feature at 7 keV of a factor of ten below

the NRL result. This applies to an observation at galactic

latitudes from +400 to the North Pole. It is probably fair to say

that with the difficulties of establishing a continuum shape

accurately, the existence of line fluxes remains to be proven in

future experiments. We may comment that the unfolding of spectral

data from a proportional counter response is by no means trivial.

Such unfolding basically depends on calculation rather than

calibration, since both the X-ray and particle spectra in space

are very different than in the laboratory.

The proportional counter measurements may be compared with a

satellite experiment of LLL (Cunningham et al. 1970; three

small diamonds at 4. 6, 8, and 12 keV). This involved a

Nal crystal with a 0. 76 cm 2 ster telescope factor aboard a



polar orbiting satellite. A mechanical shutter periodically

occulted the detector to allow background estimates. Only

about 15 minutes of data (apart from solar and discrete

source observations) was taken before a failure during the

second day of operations.

The results of LLL (intermediate sized diamonds: Toor et al.

1970) and Bologna (Horstman - Moretti et al. 1971) were

obtained with rocket-borne NaI counters. These detectors

employed passive shielding lined with a plastic anti-

coincidence scintillator to define fields of view of about 900

square degrees. The Livermore data are noteworthy because

this was the only experiment other than OSO-III to span a

range from below 10 keV to above 40 keV. The spectral

results were reported as allowing a power law fit, however,

the error bars above 30 keV are clearly large enough to be

also consistent with a considerable change in slope.

The four data points of the Bologna group (a measurement of

0. 62 + 0. 04 at 52 keV is blacked out by other data points)

are obtained with an ideal technique: one of four identical

detector units is blocked so that internal background

measurements are continually taken along with the diffuse

X-ray data. Again, we suggest contamination by a sporadic



electron population as the cause of the apparently high

points at 90 and 150 keV. This is not an unlikely occur-

rence at the invariant magnetic latitude of 380 (L = 1. 6)

of this observation. The 0. 2 mm (54 mg/cm2 ) Al window

would allow electrons of roughly 100 - 400 keV initial

energy to enter the Nal volume with 50 - 200 keV residual

energy, considering straggling. The OSO-III upper limit

of 0.18 keV/(keV cm2 sec ster) at 150 keV, not shown in

Figure 2, cannot otherwise be reconciled with this data.

b) Balloon-borne Observations

The dominant feature of the balloon-borne observations is

that there exists a significant, diffuse flux of X-rays

produced in the atmosphere. These must be separated

from the diffuse cosmic X-rays by some indirect line of reasoning.

Figure 3 schematically illustrates the observational

situation. The top solid curve is the counting rate which a

vertically pointed telescope of cone-angle 90 to 200 (as

used in the four experiments plotted on the previous graph)

might record as a function of atmospheric depth. The lower

solid curve is that which a shuttered detector might record,

and is the "internal" background defined earlier. Only
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the Leiden-Nagoya group actually used such a shutter, the

others effectively lumped internal background along with

atmospheric.

At depths below 10 to 20 gm/cm2 , the difference in the two

curves is due entirely to the atmospheric X-rays. (We intend

the Figure to show that the atmospheric X-rays may have a

different, although similar, dependence on depth compared

to the internal background.) Both the internal and

atmospheric background originate from the soft component of

the energy deg-ration of the primary cosmic rays, and show

the Pfotzer transition maximum at about 90 gm/cm2

The turn-up of the rates at altitudes higher than about 10 gm/cm2

is interpreted as the observation of X-rays external to the

atmosphere. X-rays of 30 keV have a mean free path of

3.4 gm/cm2 for photoelectric absorption, compared to ceiling

depths of 3 to 7 gm/cm2 attained in the various experiments.

The dashed curve represents an extrapolation which each

experimenter must make for the assumed behavior of the

atmospheric X-rays. The difference (R1 - R2 ) is then

multiplied by the photoelectric attenuation at the given

ceiling depth (which may be a factor of 2 to 8 correction) to

derive the diffuse flux external to the atmosphere.



There has been some discussion (e. g., Horstman and

Horstman-Moretti 1971) that additional corrections need be ap-

plied due to single and multiple scattering of diffuse X-rays

by the atmosphere, which eventually enter the detector

aperture. This discussion is important and valuable since

such a physical process must certainly take place. However,

it is not appropriate to apply such a correction to (R1 - R2)

for the following simple reason: once the diffuse X-ray

scatters in the atmosphere it loses its identity, and is no

different than an atmospheric X-ray which might be produced

by electron bremsstrahlung at the exact same location. But

all the atmospheric X-rays have presumably been accounted

for by the dashed line extrapolation. One may well ask

whether the dashed line is an accurate extrapolation of the

atmospheric background, but this is a very different, and

very important, problem.

In principle, one could study the difference between R1 and

R2 as a function of depth, and test whether it changes in the

exact manner expected for photoelectric absorption of X-rays

external to the atmosphere. In practice this is not decisive

because the points below float altitude are only sampled for

a relatively brief time during ascent or descent. As R1 - R2)

becomes smaller, the absolute error on this difference becomes



larger and it may be that the data allows anything between

zero and infinite absorption.

Strictly speaking, we might say that the true atmospheric

X-ray curve could vary considerably from the intuitively

simple extrapolations used, and that there might in fact be

no diffuse X-rays at all. Returning to Figure 2, we can let

the scatter of the data speak for itself in illustrating the

intrinsic accuracy which has been obtained. The lowest

and highest points, by the Tata Institute (Manchanda et al.

1972) and Saclay (Rothenflug et al. 1968) groups, used an

exponential law extrapolation. The Leiden (Bleeker and

Deerenberg, 1970) and Physical Research Laboratory (Rangan

et al. 1969) groups used a power law extrapolation for the

rates vs. depth. Each pair of groups spanned magnetic

shells at least from L = 1 to L = 1.7.

The detectors used in these experiments were all NaI

crystals, with some combination of passive shield and

plastic anti-coincidence. These give relatively high

susceptibility to internal background. As the groups at

UCSD, UCB, and MIT have developed detectors with lower

internal background by using 4 r active-anticoincidence

techniques, they have systematically tended to stop down



the solid angle and concentrate on discrete source observations.

We may suggest a prescription for obtaining a more objective

determination of the atmospheric X-ray contribution at ceiling.

This is based on the concept of a source function S (E, x) (X-rays

of energy E produced (cm3 sec) - 1 at a depth x). This technique

has been used successfully by Peterson, Schwartz and Ling

(1973) to interpret counting rates of atmospheric -Y-rays as a

function of depth. Figure 4 shows the basic geometry. The

function S is strictly a convenient mathematical form,

containing a few constants to be determined. With the detector

in a fixed orientation at a depth h, the source function multiplied

by the projected detector area A (0) and by the attenuation

exp (-,r) (where ; is the total coeffecient for any interaction)

is integrated over all of space. The unknown constants in S

should be determined while the detector is at large depths h

and/or while it is oriented downward. Then with the detector

pointed upward at the float altitude, C (E, h) would simply be

calculated and subtracted from the total output. Physically,

of course, S will contain a contribution from Compton-scattered

diffuse X-rays; however, this need not ever be considered

explicitly.

c) OSO-III Observations

Finally, we will discuss the data points obtained by the UCSD



X-ray telescope aboard OSO-III. These points were relatively

inconspicuous in Figure 2 because of their small error bars;

yet they are of significance as the only case in which a power

law spectrum could not fit the data of one single experiment.

Because of this significance, Schwartz and Peterson (1973)

have reconsidered the results with regard to some suggested

corrections for spallation induced radioactivity, fluorescence

radiation from the shield, and energy dependence of the

geometry factor, and we have confirmed the inconsistency of

a power law with the OSO-III data. The best fit of a power

law gives X2 = 20 for 3 degrees of freedom.

Briefly, the OSO-III experiment was a 9.5 cm 2 Nal crystal,

actively collimated by a CsI annulus to a 230 FWHM conical

field of view. The satellite had a 550 km altitude, 330

inclination orbit so that magnetic shells from L = 1 to L = 2

were sampled, and the lower edge of the South Atlantic

trapped particle region was traversed during half of the 16

orbits per day. The data was telemetered in 6 logarithmically

spaced channels between 8 and 210 keV. Certain integrated

and solar-pointing rates were also telemetered.

The most serious contributor to the background was the

existence of sporadic, charged particles. Selection criteria



to minimize contamination were developed. These limited the

upper threshold integral rate, required Ll. 2, and accepted data

only when pointed within the local magnetic loss cone. This

caused rejection of about 80 percent of the data.

The next most serious source of background was due to

radioactivity which built up when inside the trapped particle

regions, and which then decayed until the next traversal of

the South Atlantic Anomaly. A 15-hour half life decay curve

gave a good fit to the monitor count rates in the interval 30

minutes to 12 hours after penetrating the particle belts. The

activation coefficients derived from these monitor rates were

used to correct the diffuse counting rates, over the same time

span. The diamonds and upper limit in Figure 5 (taken from

Schwartz and Peterson, 1973) show the effective spectrum at

the NaI detector, due to radioactivity. Phenomenologically,

this spectrum is interpreted as Compton scattered 'Y -rays

from the Mg24 daughter produced by the reaction

27 24 15 hour Mg24 taking place throughout
Al (n, a ) Na : Mg taking place throughout

the satellite. The solid line is a spallation spectrum measured

by Dyer and Morfill (1971), and plotted with an arbitrary

normalization. The horizontal bars integrate this spectrum

over the OSO-III energy channels, and normalize it to be

consistent with the 7. 7 - 12. 5 keV limit. Thus the spallation



mechanism is probably not significant on this time scale.

This radioactivity correction could be made because it

varied on a 15 hour time scale. However, radioactivity with

a half life of a week or longer would not decay significantly

in one day, and might in principle be a constant, unnoticed

contaminant of the data. By subtracting the rates when

looking at the earth from the sky rates on day 44 after launch,

we show that at least 95 to 90 percent of the reported diffuse

flux for the three channels from 7. 7 to 38 keV cannot be

contaminated by radioactivity. The points between 38 to 110

keV might require further downward correction, but this will

only accentuate the inability of a single power law to fit the

data.

Examination of the detailed rates vs. time after launch in

the 38 - 65 keV channel, compared with the predicted build-

up curve using the proton dose by Dyer, Engel, and Quenby

(1972) led us to conclude (Schwartz and Peterson 1973) that

at most 1/3 of that proton dose would be the appropriate

normalization. We have increased the error bars of the up-

per channels so that such a radioactivity correction (if valid)

would only reduce the quoted fluxes by two sigma.

The most significant correction necessary to the previous

OSO-III results have been the allowance for K-shell X-

radiation escaping from inside of the collimator, as suggested



by Horstman (Dumas et al. 1972). Diffuse X-rays between

35 and a few hundred keV striking the inside of the CsI

collimating annulus would not trigger the shield anti-

coincidence threshold. A certain fraction of the resultant

K-escape X-rays will be emitted into the central detector,

causing a spurious contribution to the 22 - 38 keV channel.

The Monte Carlo program of J. Matteson, which has been

used extensively at UCSD to predict background rates of

X-ray and 7-ray detectors, was used to calculate an

effective telescope factor (solid angle times area) for

such fluorescent X-ray events as a function of the incident

photon energy above 34 keV. The product of this telescope

factor and the diffuse spectrum 2200 E-3 previously

estimated (Schwartz et al. 1970) was integrated from 34 to

210 keV. As a result, the point at 30 keV was reduced 17

percent.

d) Summary

In Figure 6 we attempt to summarize the most reliable data

selected according to the following criterion: The experiment

either operated over a range of geomagnetic conditions, or

else incorporated some direct means for assessing effects of

electron contamination. The Livermore rocket experiment

(Palmieri et al 1971) had a methane-filled anti-coincidence



proportional counter over the entrance to their argon

detector. This experiment of all the rocket and satellite

observations should be uniquely free of charged particle

contamination. The ASE experiment (Gorenstein et al. 1969)

incorporated pulse shape discrimination, which is sensitive

to relativistic electrons which may deposit only a few keV

total energy but spread out over a long path. That experiment

also had one counter unit with a 1 mil Be window and three

counter units with 3 mil Be windows. These windows would

show very different transfer characteristics for the 70 - 100

keV geomagnetic electrons.

The three experiments of the Leiden - Nagoya group (Bleeker

and Deerenberg, 1970) provide key evidence for the reality

of a diffuse component above 40 keV. The experiments took

place at 200, 400, and 500 geomagnetic latitudes. The flux

densities at the various latitudes are in reasonable agree-

ment, while the inferred component of 20 - 40 keV atmospheric

X-rays is a factor 5 higher at the northern latitude.

The solid curve shows the function

-0. 52
10E for 1 - E - 23 keV

I (E) [ keV/keV cm2 ster sec ] = for E 23 k-1.37 (2)
140E for E >23 keV,



and the dashed curve is

I (E) = 3.3 exp (-E/34.4), (c. f. Cowsik and Kobetich, 1972) (3)

The sharp break in the power law representation does not have

physical reality - this is merely a minimum parameter power

law representation of the data. The key observational

conclusion of such a representation is that the overall change

in the slope is at least an exponent of 0.9. The errors in the

power law indices are roughly + 0.1 below 23 keV and + 0.15

from 30 - 100 keV. The error in the effective kT of equation 3 is

somewhat larger, as we have arbitrarily tried to fit the data

only in the 10 - 100 keV range.

In Figure 7 we wish briefly to compare with the data from a

few hundred ev to a few Mev. We have not attempted any

completeness in the higher and lower energy data. The ASE

point at 270 ev was obtained with a focusing collector, and is

an upper limit in the sense that Gorenstein and Tucker (1972)

argue it might all result from galactic sources. The Wisconsin

upper limit is based on the absence of absorption by the Small

Magellanic Cloud (McCammon et al, 1970). The Ranger 3 data

(Metzger et al, 1964) represent only an energy-loss count rate

spectrum, while the Apollo 15 data (Trombka et al, 1972) have

been unfolded to a photon spectrum, and corrected for spallation



induced radioactivity.

IV. THE EMISSIVITY FUNCTION

If we assume a constant emissivity B (E) per unit coordinate

volume, through which we look a distance Rm, then equation (1)max

becomes simply

I (E) = 1 B (E) R (4)
4 r max

Equation (4) holds, to within a factor of 2, for the popular

models of Friedman cosmologies, providing there are no

significant evolutionary effects, and providing that we take

R = 1 c/H . We will adopt H = 75 km/sec Mpc. Then from
max 2 /o o

equation 2, we have

-26 -0. 52 3
2.1 x 10- 2 6 E keV/(cm sec keV) for E 5 25 keV

B (E)=-25 -1. 37 3
2.9 x 10-25E keV/(cm sec keV) for E - 25 keV.

For the integrated emissivity between 2 and 7 keV,

39 Mpc 3
B = 2.2 x 10 ergs/sec Mpc . We stress that B is determined

directly from the observations, and subject to the qualifications

above it will not change significantly. The redshift will preserve

a power law shape.

V. CORRECTION FOR DISCRETE SOURCES

Characteristics of the classes of discrete extragalactic sources

identified in the 2U catalog (Giacconi et al, 1972) are sum-

marized in Table 2. In Figure 8 we illustrate how they modify



the emissivity function. We must stress that the spectra and

total emissivities are very poorly determined for the cases

where we only have 1 single object in the class: the Seyfert galaxy

NGC 4151, the radio source CEN A, and the quasar 3C 273. We

have normalized the total power of each source according to the

quantity noJ, and represented its spectrum as the flat end of the

range allowed by UHURU in order to obtain the closest agreement

to the background shape. The solid curve is the power law

representation presented earlier. The higher dashed curve

represents the subtraction of the identified extragalactic sources.

The bottom dashed curve represents a possible residual emissivity

if we hypothesize that the unidentified high latitude sources are a

new class of extragalactic object which produce 1/2 the background

observed from 2 - 7 keV.

VI. INTERPRETATION AS 'THERMAL BREMSSTRAHLUNG

Figure 9 replots the data on a semi-log scale. Correction for

discrete sources allows the exponential fit to hold above 5 keV.

The two solid curves (Field, 1972) are the temperature independent

lower limits to radiation from a hot intergalactic plasma of

sufficient density to close the universe. In the "Big Bang" model

the gas is suddenly heated to a temperature To at an epoch z = 1,

and cools adiabatically with an index 7= 5/3. Field uses a Hubble



constant H = 50 km/sec Mpc. The predicted spectrum is
o

approximately exponential with e-folding energy k T , and would

be tangent to the lower limit curve at Eo = (0. 57) k T . The

observed radiation falls a factor of 2 below the minimum, and the

discrepancy is worse if the intergalactic medium is not smooth.

The disagreement implies one or more of the following:

1) The density of intergalactic plasma is N- less than required

-6 -3
for a closed universe, or n = 2 x 10 particle cm ;

2) The Hubble constant is a factor 3- smaller, or H = 40 km/sec

Mpc;

7o
3) The temperature T -s 3 x 10 K.

We hope we have not spent too much time discussing X-ray results at a

7 - ray symposium. We have tried to make the point that the X-ray

observations have a relatively high level of precision, and that we can

start using them to do some interesting physics. We look for many more

exciting results and new ideas to come as study of the spectrum and of

the isotropy is extended into the MeV region.
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TABLE I

Internal Background

Method of Deduction Used by Contaminant Might Affect

Earth Occultation PRL Albedo Leiden, PRL,
Tata, Saclay

Opaque Shutter LLL, Bologna, ASE Production in ASE, LLL
s hutter

Variable Solid Angle GSFC Precipitating GSFC, Bologna,
Electrons OSO-III, ASE,

PRL

Modulation with OSO-III, Leiden, Radioactivity OSO-III, LLL
vehicle motion PRL, Tata, Saclay (satellite)



TABLE 2

Contribution of Discrete Sources to the X-Ray Background

Spectrum Fraction
(kT, for Luminosity Density Emissivity of

# in 2 U 1-10 keV <j> ergs n (Mpc)-3 Bk ergs Background
Source Catalog range) sec k sec (Mpc) f

Normal 3 39Galaxies 5 keV 2 x 10 0.03 6 x 1037 0.027

Giant Radio 10 - 15 3 x 104 1  3 x 10- 5  9 x10 3 6  0. 004 I
Galaxies

Seyf ert 1 (1.5 - 6.5) 104 2  3 x 10- 4  3 x 103 8  0.14
Galaxies

Rich Clusters 5 5 - 8 3 x 1044 2.5 x 10- 7  7. 5 x 103 7  0. 034

QSO's 1 (4 - 15) 3 x104 5  10 3 x 1037 0. 014

Subtotal 11 4.8 x 103 8  0.22

Observed 15 - 20 2.2 x 103 9  1. 0
Background

10d43 -5 38
Unidentified 22 4 -6 5 x 10 10 5 5 x 1038 0.25 ?

Sources
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FIGURE CAPTIONS

FIGURE 1 Derivation of the microwave temperature at 3. 2 cm

in the experiment of Roll and Wilkinson (1966). Several

of the corrections have magnitude nearly equal to the

final result of T = 3.0 OK. The random errors arean

order of magnitude smaller than the estimated systematic

effects.

FIGURE 2 A selection of published energy flux measurements of

the diffuse X-ray background. Results presented only

by giving spectral parameters, and points with greater

than 30 percent error estimates, are excluded. The

data show a general consistency, with the high rate

points around 10 keV and 150 keV possibly due to electron

contamination. The slope increases with higher energy.

FIGURE 3 Representation of the counting rates of a vertically

mounted, wide-aperture telescope. Diffuse X-rays

cause the turn-up of the "aperture open" curve. One

must estimate the atmospheric contribution (dashed line)

to deduce the diffuse intensity.

FIGURE 4 Geometry for calculating the contribution of atmospheric

X-rays to the counting rate C (E, h) of a detector at

depth h (from Peterson et al, 1973). An empirical

volume production rate function



S (E, x) is constructed as a function of depth x. The

integral over the volume of the atmosphere gives the

contribution for a fixed detector orientation.

FIGURE 5 Diamonds and upper limit: Effective spectrum of

radioactivity background observed by the OSO-III

X-ray telescope immediately after emergence from the

proton belts. Solid line: an effective spectrum due to

spallation measured by Dyer and Morfill (1971) as the

difference in CsI crystal output measured 86.5

minutes and 11. 2 hours after irradation. The normalization

is arbitrary. Horizontal bars: The same spallation

spectrum integrated over the OSO-III energy channels

and normalized for consistency with the measured limit

at 10 keV (from Schwartz and Peterson 1973).

FIGURE 6 An attempt to select the most reliable experimental

data between 2 and 200 keV. The observations either

utilized some direct means for assessing effects of

electron contamination, or else operated over a range

of geomagnetic conditions. The solid curve shows the

power law 10E - 0 . 52 keV/(keV sec cm2 ster) below 23

keV and 140E - 1 . 3 7 above 23 keV. The dashed line is

the function 3.3 exp (- E/34. 4).



FIGURE 7 The data and power law fit of figure 6 is shown along

with a sample of measurements at higher and lower

energies. The Ranger 3 data are only an energy-loss

spectrum, while for the Apollo results the true photon

spectrum has been unfolded and a correction applied

for spallation induced radioactivity.

FIGURE 8 Volume emissivity functions. The top solid line

shows the emissivity derived from the power law

representation of figure 6. The five curves for

identified extragalactic sources are derived from

estimates of intrinsic luminosity and spectra based

on the 2U catalog. The upper dashed curve corrects

the diffuse emissivity for these sources. The lower

dashed curve represents the resulting diffuse emissivity

if we postulate that the unidentified high latitude

sources (observed to have a spectrum with kT = 5 keV)

comprise 50 percent of the 2 - 7 keV diffuse background.

The points at 20 keV are from UCB, and the UCSD OSO-7

experiment.

FIGURE 9 The data from figure 6 are plotted on a semi-log scale.

The dashed line is the function 3.3 exp (-E/34. 4).

The solid lines are "lower limits" to the emission from

a hot intergalactic plasma of sufficient density to



close the universe calculated by Field (1972) with

3
a Hubble constant H = 50 km/sec Mpc . The

o

X-ray observations are at least a factor of two

discordant with the Big Bang model.
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I. INTRODUCTION

During the trans-earth portion of the Apollo 15 and 16 missions,

data on the spectrum of the total (diffuse and discrete sources)

cosmic y-ray background over the 0.3 - 27 MeV range was obtained

(Reference i). An uncollimated 7.0 cm x 7.0 cm cylindrical NaI(TI)

scintillation counter located on a boom 7.5 m from the Apollo Service

Module was used to perform the measurement. An analysis of the data

obtained on Apollo 15 is presented here.

A major source of interference in determining the magnitude and

shape of the cosmic gamma spectrum can be attributed to the cosmic-ray induced

activation of the NaI(Tl) detector crystal. A NaI(Tl) crystal similar

to that used during the Apollo 15 and 16 missions was flown aboard the

Apollo 17 Command Module. This crystal was returned to earth and

measurements of the induced activity were obtained. Preliminary

analysis of the results are now available (Reference 2). Other sources

of interference with respect to the determination of the diffuse gamma

ray spectrum have also been considered. This interference or background

was due to sources aboard the spacecraft and cosmic-ray induced gamma ray

emission from the spacecraft and material surrounding the detector.

Attempts have been made to correct the measured spectrum for these

background effects.

An upper limit measure of the gamma ray flux around .51 MeV was

also obtained.

II. INSTRUMENTATION

The Apollo 15/16 gamma-ray spectrometer (Reference 3) consists
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of a 7.0 cm dia x 7.0 cm long NaI(Tl) central detector viewed by a 3"

photomultiplier. Except at the photomultiplier end, the crystal is

surrounded by a 1 cm thick plastic scintillator shield which detects

charged particles. The plastic scintillator is viewed by a 1-1/2"

photomultiplier and has a threshold of about 1.0 MeV for generating

an anticoincidence event when interactions occur in the most optically

unfavorable location. Central detector events with no shield anti-

coincidence are pulse-height analyzed into 511 channels and are

transmitted at a maximum event rate of 369 counts/sec. The shield rate,

the coincidence rate, and the livetime are transmitted every 0.328

seconds. The spectrometer and associated electronics are enclosed in

a thermal shield and mounted on a boom which could be extended from one

side of the Service Module by an astronaut. The components carried on

the boom present - 5 gm/cm averaged over all directions. The astronaut

could fully deploy the detector to 7.6 m from the spacecraft edge or

position it at intermediate distances using stop-watch timing. Further-

more, he could step the high voltage supply or disable the anti-

coincidence.

III. RESULTS

(a) Energy Loss Spectra

The data reported here were obtained during portions of the Trans-

earth Coast of Apollo 15 from about 2200 4 August to 1500 7 August 1971,

and represent -4 hours of operation in the extended position. During

this period the earth and moon solid angles were always less than 10-2
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sr and in the fully extended boom position, the spacecraft subtended

~ 0.28 sr. Spectra were obtained with the detector at various boom

positions, with the anti-coincidence both on and off, and with the

high voltage set to give several energy ranges up to 27 MeV. Although

data were obtained over a 0.16 to 27 MeV range, the analysis reported

here is based on energy losses > 0.3 MeV. Calibration was obtained

with a Hg2 03 source and by means of known, easily identifiable space-

craft background y-rays. Counting rate anisotropies, if they exist,

were averaged out over long runs from which these results were derived,

since the Command/Service Module rotated - 3RPH in the ecliptic plane.

Figure 1 shows energy-loss spectra (for several important data

modes) corrected for livetime, channel width, and the isotropic detector

geometry factor of 57.5 cm . Here counts have been summed over channels

consistent with the detector energy resolution which was 8.6% at 662 keV.

With the exception of the strong line at 0.51 MeV, most of the y-ray

lines measured inboard largely disappear with boom extension, leaving

a continuum extending to 27 MeV, on which is superposed a number of

weak lines. Since the intensity changed only about a factor of five,

while the spacecraft solid angle changed a factor of 20, most of the

count rate in the extended position is not of spacecraft origin. From

a detailed analysis of the rates vs. solid angle, we estimate

6.6 x 10 -' c(cm 2-sec-MeV)-1 at 2.4 MeV and - 1.9 x 10 - 3 c(cm 2-sec-MeV)-'

at 5 MeV are due to the spacecraft. These are 0.1 and 0.2, respectively,

of the spectrum with the boom extended.
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The flat energy loss spectrum of 0.052 c(cm2-sec-MeV)-1 above

5 MeV with the anti-coincidence disabled in the extended position

agrees with that value expected from the shield rate of 450 c/sec, from

which a cosmic-ray flux of 3.50 (cm-sec)-1 may be derived. The large

ratio of cosmic-ray to photon energy losses near 27 MeV requires

effective charged particle rejection, which could not be measured

before launch to the required accuracy. However, preliminary results

from an identical experiment on the Apollo 16 in April 1972 confirm

the Apollo 15 differential energy loss spectrum below 10 MeV to within

- 12 percent. We interpret this as indicating that there were not

systematic differences in the behavior of the instruments.

The energy loss spectrum with the anti-coincidence enabled in

the extended position is shown with other measurements obtained in

cislunar space in Figure 2. The NaI(Tl) Apollo 15/16 detector is

identical in size to the CsI(Tl) detector in Ranger III (Reference 4)

both of which differ only slightly from the NaI(Tl) crystal on the

ERS-18 (Reference 5). The 8kg mass on the end of the Apollo 15 boom is

nearly the same as that system aboard the ERS-18, while the Ranger III

detector carried only - 3kg. Clearly, the present data are in good

agreement with previous measurements below - 2 MeV, but are well below

the 3.7 - 6.0 MeV point measured by the ERS-18, which is apparently

erroneous.

(b) Equivalent Photon Spectra

The equivalent photon spectra, Figure 3, have been obtained from
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the energy loss spectra in Figure 1 and 2 by using a measured response

"library" and a matrix inversion technique as described in Reference 3.

The y-ray lines are separated from the continuum by using an iterative

procedure, (Reference 6 and 7). Here the pulse-height spectrum is

transformed to photon space where lines appear as discontinuitie, which

may be subtracted by requiring the remaining continuum to vary slowly

with energy. This procedure results in the removal of 2.5 c/sec over

the 0.6 to 3.5 MeV range due to lines or about 17% of the energy loss

spectrum, and leaves a smooth equivalent photon continuum shown in

Figure 3.

A few comments on the determination of the measured response

"library". The shape and detection efficiency of these library functions

strongly depends on the angular distribution of the incident gamma ray

flux. To illustrate this point, the detection probability (intrinsic

efficiency) for a 7.0 cm x 7.0 cm cylindrical NaI(Tl) detector is given in

Figure 4 as a function of energy for two different cases: a parallel

beam incident on the face of the crystal (the crystal axis is parallel

to the beam), and an isotropic distribution of gamma rays. As can be seen

there is significant difference in the detection efficiencies over much

of the energy region of interest. The shapes of the pulse height spectra

do not seem to change quite as radically as a function of the angular

distribution of the incident flux. In order to transform from

measurement or energy loss spectra to photon spectra, efforts were

made to eliminate all background components in order to isolate the
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energy loss spectra characteristic of the diffuse component. The

assumption was then made that this component was isotropic and the

transformation was then performed using an "isotropic" type response

library. From a comparison of our experimental work (Reference 8)

with Monte Carlo calculations (Reference 9), we found that the response

library function can be calculated theoretically for any energy and

geometry needed in the analysis.

(c) Discrete Line Spectra

The discrete line spectrum in the measured cosmic ray spectrum

can be mainly attributed to natural radioactivity aboard the spacecraft

(K-40O and Th), proton and neutron induced activation in the spacecraft

and materials surrounding the detector, and activity induced in the

detector itself. Using the technique considered in section (b), the

continuous portion of the energy loss spectrum was determined and the

continuous spectrum was subtracted from the uncorrected energy spectrum.

In this way, the energy loss spectrum characteristic of discrete lines

is determined. The results are shown in Figure 5. Identification of

certain lines are also indicated. We believe that the following lines

can be identified: a) the .51 MeV line due to positron annihilation,

b) the .63 and .69 MeV lines due to proton induced activation of the

crystal producing 1'4I and 1261, the 1.47 MeV characteristics of 4 0K,

c) and the 2.6 MeV line of Thorium. Other lines due to Thorium, (n,y)

and (n, n, y) reactions on Mg, H, Al, 0 and Na may also be presented.
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(d) Spallation Correction

Fishman (Reference 10) has suggested that radioactive spallation

nuclei produced by cosmic-ray interactions in the scintillation crystals

may account for a large fraction of the counting rate measured in the

1-3 MeV region. Although a direct measurement of this effect in the

cosmic-ray flux is difficult and has not been accomplished, calculations

and laboratory measurements by Reference 10 and (Dyer, private communication)

have indicated the spectra shape and approximate magnitude of the energy

loss spectrum. We have attempted to correct the spectra of Figure 3

for this effect by subtracting from the equivalent energy loss spectrum

a spallation model spectrum whose normalization was a free parameter.

Since spallation contributes mostly to the energy losses in the 0.6 to

3 MeV range, the normalization was determined, rather arbitrarily, by

the criterium that the resultant photon spectrum be relatively smooth.

This was found to occur when a spallation spectrum, based on the work of

Reference 10 and Dyer and Morfill (Reference 11 and private communication)

but of approximately half their intensity was subtracted out. As shown

in Table 1, this results in removal of about 16% of the energy loss

spectrum in the 0.6 to 3.5 MeV range and a negligible amount at higher

energies. Subtracting a much larger spallation component, such as the

full Dyer and Morfill value, would give no energy loss spectrum in the

1-2 MeV range, while still requiring an external photon component

above 3 MeV which is not phyiscally possible. Although there seems

no doubt that a spallation energy loss contribution exists, its spectral
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shape and intensity are only approximately known.

The spallation components are always subtracted out in energy

loss space. In an attempt to obtain experimental data on the extent of

the proton-induced activity, a NaI(Tl) crystal was flown aboard Apollo

17. The crystal assembly was physically identical to that flown

aboard Apollo 15 and 16 (Reference 3). The assembly aboard the Apollo

17 CSM did not include the photo-multiplier, the proton anti-coincidence

mantle, and the thermal shield. The detector was a 7 cm x 7 cm right

cylindrical crystal. A glass plate was optically sealed to the crystal.

MgO was used as the optical reflector inside the crystal assembly. This

type of assembly permitted the crystal to be hermetically sealed, and

allowed for a simple procedure for optically coupling the crystal

assembly to a phtot-multiplier tube after flight. The crystal and

reflector were enclosed in a steel jacket. An identical second crystal

assembly which was not flown was used as a control throughout the

measurement program. After splashdown, the flight (i.e., activated)

crystal was returned to the recovery ship and optically mounted on a

photo-multiplier tube and pulse height spectra were obtained. The

activated crystal was counted in a large steel low level shield. The

crystal counting started about one and a half hours after the Command

Module re-entered the earth's atmosphere. Before spashdown the control

or unactivated crystal was optically sealed to a photo-multiplier tube

and the background was determined in the steel shield. The same photo-

multiplier tube was used to count the activated and control crystal
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assemblies. After thirty hours of counting aboard the recovery ship,

the detector was flown back to the Oak Ridge National Laboratory (ORNL)

where measurements were continued. This permitted the observation

of the decay of the longer-lived induced activities. Direct measurements

of the induced activities were made by again, by optically sealing a

photo-multiplier tube to the activated crystal. Indirect measurements

using both Ge(Li) detectors and a large scintillation 4r detector in a

low level counting system at ORNL (Reference 7) were performed in order

to determine the spectral distribution and intensity of the emitted

radiations. The 4T scintillation counter is divided into two halves.

Both halves can be operated so as to require that there be coincidence

events in both halves before an event is analyzed and recorded (coin-

cidence spectra) or both halves can be operated without the coincidence

requirement and events independent of their coincidence can be analyzed

and recorded (singles spectra).

To date it has been possible to obtain qualitative identification

of the following nuclear species: 2 2Na (2.6 yrs.), 2 4Na (15 hrs.),

123I (13 hrs.), 1241 (4 days), 1281 (13 days), 128I (25 min.), and

1 2 7 Xe (34 days). After suitable calibrations, quantitative concentrations

of these radionuclides will be obtained. The present results indicate

that the induced activity observed after recovery can be attributed

mainly to species with half lives of about half a day and longer. Decay

products with shorter half lives do not make a large contribution to the

post recovery integral count rate. This is not to imply that there are
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no short half life components. In fact, the line at 0.44 MeV charact-

eristic of 128 I. There are a few more regions with relatively short

half lives (in order of tens of minutes) which have not as yet been

identified.

Figure 6 shows the pulse height spectrum obtained during the first

hour and a half of counting after recovery. The spectrum has been

corrected for background by subtracting the measurements obtained with the

control crystal. Peak energies for the nuclides presently identified are

indicated. The peak positions of 123I, 1241, 1261, 1281 are displaced

27 keV due to X-ray emission and absorption in the crystal after electron

capture.

Measurements of the flight and control crystal carried out at the

low level counting laboratory at the Oak Ridge National Laboratory prior

to flight, indicated the K and Th content of the flight crystal to be

slightly higher than that for the control crystal. Thus, one would

expect some indication of these elements after background subtraction.

The energy identification for 124I, 1261, and 2 4Na, have been verified

by measurements made with the Ge(Li) detector and in the low level counting

system. Both energy and half life information have been used to determine

the presence of these nuclear species. The 1231 and 128I were identified

by use of the spectra obtained on board the carrier from both energy and

half life determinations. 22Na has been tentatively identified based on

a preliminary analysis of the data obtained by the coincidence measurements

in the low level counting facility. 12 7 Xe presence has been determined by

the identification of energy lines at 0.172 MeV, 0.203 MeV and 0.375 MeV

using the Ge(Li) detector.
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One factor requiring consideration was the difference in the

environment during the Apollo 15 and 16 missions compared with Apollo 17

mission. Firstly, the crystals aboard Apollo 15 and 16 were stowed in

the Service Module and extended twenty-five feet away from the vehicle

for short periods of time, whereas the Apollo 17 crystal was stowed

in the Command Module for the total flight time. Thus, there was a

difference in mass around the crystal which might cause a difference

in the secondary proton and neutron flux in the region of the stowed

crystals. Secondly, the exposure profile of the primary flux both in

time and spectral distributions were different. The Apollo 17 crystal

passed through the near earth trapped proton flux twice before measure-

ments, while the Apollo 15 and 16 detectors had passed through the

trapped belts only once before measurement. The Apollo 15 measurement

of diffuse gamma-ray spectrum was made about 250 hours after lift off

while the Apollo 17 measurements were made some 305 hours after lift

off. It has not as yet been determined how significant these differences

are in terms of trying to infer the magnitude of the proton-induced

activity in the Apollo 15 and 16 detectors from the Apollo 17 measure-

ments.

The shape of the cosmic ray-induced gamma-ray pulse height spectrum

can be divided into two parts: the discrete line spectrum and the

continuous spectrum. The discrete line pulse spectrum for activated

nuclear species in the crystal is produced by monoenergetic gamma-rays

emitted after electron capture. The continuum for such nuclear species
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is produced by electrons, positrons, positron annihilation, and gamma

rays (other than those emitted after electron capture) interacting in

the crystal. If the material surrounding the crystal is radioactive

(eg some 2 4Na, Th, 4 0 K) then monoenergetic gamma rays independent of

the mode of decay can be seen in the crystal as a discrete line pulse

height spectrum. In Figure 6, the discrete lines are indicated and

the continuous distribution can be seen underneath. The actual energy

position should be moved , 27 KeV up in energy due to the summing of

iodine K X-ray line with the gamma-ray line after K capture.

In the Apollo 15 trans-earth spectrum (Reference 10), the 124I

0.606 MeV, and the 126I 0.66 MeV lines can be identified. It has been

calculated that the integrated count rate in this region above the

continuum for Apollo 15 is half of that observed in the same region

above the continuum for the Apollo 17 mission. This difference cannot

be attributed to the difference in exposure time alone. Thus, the

difference in local mass and the passage through the near earth trapped

radiation belts a second time may be the cause of this increase.

In Figure 6 the magnitude of the continuum and associated error

as predicted in Reference 10 is compared with the Apollo 17 measurement

taken aboard the recovery ship. The magnitude of the continuum inferred

from the Apollo 15 data (Reference 1) is also shown. Its magnitude is

consistent with the Apollo 17 results if it is considered that the discrete

line magnitude for 1241 and 1261I is down by a factor of two. This also

assumes that the shorter half lived nuclides and the prompt gamma-ray
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emission is small compared to the longer half lived emitters. Calcul-

ations (Reference 11) indicate that short half-lives may be quite important.

(e) Spacecraft Continuum

The following procedures were used to determine the magnitude of

the spacecraft continuum.

Spectra were obtained with the detector position at 6 feet, 8

feet, 15 feet and 25 feet away from the spacecraft. An effective

solid angle for each position was calculated for these positions. The

discrete line spallation backgrounds discussed in sections b and c were

then subtracted from the energy loss spectrum at 6 feet and 25 feet.

It was then assumed that the 6 foot spectrum characterized the energy loss

spectrum of the continuous gamma rays spectrum emitted from the space-

craft. The intensity at 6 feet is reduced by the ratio of the effective

solid angle at twenty-five feet to the effective solid angle at six

feet. This then is a first estimate of the contribution of the space-

craft continuum at 25 ft. The spacecraft continuum contribution is then

subtracted from the residual energy loss spectrum at twenty-five feet

and a first estimate of the energy loss spectrum due to the diffuse

component is obtained. It is now assumed that the diffuse energy loss

spectrum does not depend on the distances of the detector from the

spacecraft (i.e. the spacecraft occultation is ignored) and this first

approximation is subtracted from the energy loss spectrum at six feet.

A second approximation of the continuous energy loss spectrum from the

spacecraft at six feet is obtained. This new continuous energy loss



spectrum is corrected for change in solid angle to obtain its contrib-

ution at twenty-five feet and then subtracted from the original

residual energy loss spectrum at twenty-five feet in order to obtain

a second approximation of the diffuse energy loss spectrum. The

procedure as described above is continued for another two iterations

and it was found that the shape of the diffuse energy loss spectrum

did not change significantly between the last two iterations. After

the last iteration, the energy loss spectrum was then converted to

photon spectrum. The transformation was accomplished using library

functions and efficiencies characteristics of isotropic flux distrib-

utions.

(f) Cosmic Photon Spectrum

The photon spectrum incident on the central detector, shown in

Figure 3 as a dashed line, has also been corrected for the various

interferences discussed in sections (a) through (e). The contribution

of the various components over the 0.6 - 3.5 MeV and the 3.5 - 9.0 MeV

ranges are summarized in Table 1. Despite the many corrections, about

50-75% of the energy losses cannot be accounted for by presently under-

stood local processes and therefore must originate externally. Ob-

taining the photon spectrum incident isotropically on the spectrometer

requires a correction for local matter. Taking this to be equivalent to

a uniform shell 5.0 gm/cm2 thick of Al surrounding the Nal crystal, and

correcting for absorption, but not scattering, results in the final

photon spectrum shown in Figure 3. We have assumed the photon continuum
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extends as E- 2 . 0 above 27 MeV; however, the result is rather independent

of this shape.

Systematic errors, which are difficult to estimate, completely

dominate the statistical uncertainties in this analysis. Correcting

for the spacecraft lines can be done to high precision. The effective

solid angle for continuum production in the spacecraft may be less

certain. No correction has been made for production in local material,

which is believed to be small (Reference 5). We estimate the equivalent

photon spectrum, before correction for spallation, to be accurate to

about + 20%. The spallation correction cannot be much larger than

that indicated in Figure 3. Correcting for absorption, but not

scattering, results in an upper limit to the external flux.

These results may be compared to those of others who have

presented spectra at various stages of correction. The Apollo 15 photon

equivalent continuum is considerably below that determined from ERS-18,

which had no corrections for y-ray lines, effects of local material,

or spallation, and which apparently had an instrumental malfunction

at higher energies. The final photon Apollo 15 spectrum is compared

direction with balloon and low altitude satellite work (Reference 12, 13,

and 14) in Figure 7. The result of the reference is considerably

above the other work and is therefore not shown. Although the low

latitude observations should not require a significant correction for

spallation, they do require an altitude and latitude dependent model

to correct for cosmic-ray produced y-rays, and in some cases, an
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additional large correction for counter efficiency.

The new results, in addition to being in reasonable agreement

with the more recent work above 1 MeV, also agree with data near

100 keV (Reference 15) when extrapolated as an E-2 power law. Further-

more, the Apollo spectrum is consistent with new data on the diffuse

component near 30 MeV (Reference 16 and 17). Figure 7 shows some of

these results, as well as at 100 MeV obtained from the 0SO-3 (Reference

18).

Also shown in Figure 7 is a single power law which has been

suggested (Reference 15) as capable of representing the total cosmic

y-ray spectrum between e 0.02 and 1.0 MeV. It is clear that the

derived Apollo 15 spectrum is well above this extrapolation and even

though we interpret our result as an upper limit, we do not believe that

the remaining small corrections and uncertainties can reduce the final

cosmic spectrum to the extrapolated value.

IV. DISCUSSION

Assuming that the y-ray fluxes are of extragalactic origin

(Reference 19) a number of workers have attempted to account for the

spectra shown in Figure 7. Compton scattering of electrons leaking

from radio galaxies (Reference 20), redshifted y-rays from o decays

produced by cosmic-ray collisions at an early epoch of the expanding

Universe (Reference 21), nuclear y-rays from supernovae in distant

galaxies (Reference 22), intergalactic electron bremsstrahlung

(Reference 23, 24 and 25) and matter-antimatter annihilation (Reference 25)
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have all been suggested. Vette (Reference 5), in attempting to

account for the ERS-18 data, fitted a model in which a no decay

component produced at an epoch with a redshift a 70 was superimposed

on a Compton scattering X-ray background. Based on the present

data, the intensity of the flux required at very early epochs

is reduced somewhat. The final spectrum of Apollo 15 does

require an additional component above a simple power law. A discussion

of the theoretical consequences of these results is given by Stecker

elsewhere in these proceedings.

The analysis process used here subtracts out all discrete Y-ray

lines and produces a smooth continuum, as presented in Figure 3.

Discrete y-rays of cosmic origin, if they exist, would therefore be

removed along with known spacecraft and spallation contributions.

Only considerable further analysis can separate these components, and

place valid limits on possible cosmic components.

The y-ray line near 0.51 MeV has an intensity after correction

for spacecraft production and local absorption estimated to be

3.0 + 1.5 x 10-2 photons (cm2-sec) - l . The uncertainty is an estimate

of the effect of systematic errors in the correction for weak Y-ray

features near this energy and for detector efficiency and absorption.

The 0.51 MeV Y-ray measured on Apollo 15 cannot originate in the

spacecraft since this component decreases less rapidly with spacecraft

solid angle than the continuum. The intensity of the line seems
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inconsistent with upper limits on the cosmic flux at 0.51 MeV of

< 10-2 photons (cm2 -sec )-1 obtained from balloon measurements

(Reference 26) and on the Ranger III (Reference 4). Since the

Ranger III, which also measured in interplanetary space, had consider-

ably less matter locally to the detector, it may be possible to

attribute the flux to annihilation of positrons produced by cosmic-rays

or spallation g+ decays in the local mass. It is also possible that

low energy positrons of either solar or cosmic origin with a flux

of 10- 2 (cm2-sec)-1 could stop and annihilate in the inert matter

surrounding the detector. Such a mechanism has been suggested by

Stephens (private communication) and is in fact consistent with the

interplanetary medium flux of 2 x 10-2 positrons (cm2-sec)-1 at , 2 MeV

reported in Reference 27. Haymes (Reference 28) has reported a y-ray

line at , 470 keV whose intensity is 2 x 10-3 photons (cm2-sec)-1

originating from the galactic center. The y-ray line measured on

Apollo 15 is definitely at 0.511 + 0.012 MeV, and the 
2q upper limit

to a y-ray at 0.47 MeV is , 2 x 10-3 photons (cm2-sec)-1, based on the

analysis of four hours of data.
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FIGURE CAPTIONS

Figure 1. Energy loss spectra in the 7.0 cm dia x 7.0 cm long

NaI(Tl) scintillation counter measured on Apollo 15 during

Trans-earth Coast. Since the rates decreased only a factor

of about 5 when the detector was extended to 7.6 m, while

the solid angle subtended by the spacecraft decreased a

factor of 20, we interpret most of the rate in the extended

position to be associated with cosmic -rays'. The spectrum

with the anticoincidence disabled agrres that expected

from cosmic-rays passing through the crystal edges.

Figure 2. Energy loss spectra are compared directly with other

measurements obtained outside the magnetosphere. These

data were obtained with counters that differ only slightly

in geometry and materials.

Figure 3. Equivalent photon spectra derived from the Apollo 15 are

shown at various stages of data correction. First all

component due to discrete y-ray lines are removed, then the

spacecraft continuum contribution, and an estimate of

energy losses due to spallation nuclei are subtracted. The

final result contains a correction for absorption of local

material, assuming all energy losses at this stage are due

to an external isotropic y-ray flux.

Figure 4. Intrinsic efficiencies as a function of energy for a

7 cm x 7 cm NaI(Tl) detector.. Both parallel beam and

isotropic gamma ray fluxes are considered.
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Figure 5. Discrete line energy loss Spectrum Apollo 15.

Figure 6. Proton induced activity in 7 cm x 7 cm NaI(Tl) crystal

1-1/2 hours after re-entry. The background has been

subtracted. Counting time was 1800 seconds. The spectrum

measurement started an hour and a half after re-entry.

The spectrum was obtained by direct internal counting of

the activated crystal.

Figure 7. The cosmic photon spectrum derived from the Apollo 15 data

agrees with previous results below 1 MeV, but is well below

that determined from the ERS-18 at higher energies. Limits

derived from balloon and low altitude satellite work, despite

large corrections for efficiency and cosmic-ray produced

y-rays, are in agreement with the Apollo results.
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S-A
Introduction

Radio astronomy was born in the 1930's when Karl G. Jansky (1932;1933)

discovered a "steady hiss type static of unknown origin" which he concluded

"is fixed in space, i.e., that the waves come from some source outside the

solar system." The source was in the direction of the center of the galaxy.

From further observations Jansky demonstrated that radio emission is also

observed, but with diminished intensity, when other regions of the Milky Way

passed within the field of view of his antenna. Some 30 years later the

newest branch of astronomy was born when a detector on board the OSO-3

satellite found that 7-ray photons 1016 times more energetic than the radio

waves were also emitted from the plane of the galaxy (Clark, Garmire and

Kraushaar 1968). However,the similarity in the early histories of these two

disciplines stops right there. Whereas Jansky discovered extraterrestrial

radio emission while studying the arrival direction of thunderstorm static,

the discovery of cosmic 7-rays came after more than a decade of intensive

investigation by various laboratories.

In this paper I shall discuss recent observations of cosmic 7-rays made

subsequent to the discovery of energetic photons from the galactic plane. An

extensive review of the field prior to 1971 has been compiled by Gal'per et al. (1972;

also Fazio 1973 and Pal 1973). I shall treat three main areas under current

investigation: a) 7-ray emission from the plane of the galaxy, with emphasis on

observations made in the vicinity of the galactic center; b) 7-ray emission

from the Crab Nebula and its pulsar; and c) diffuse 7-radiation.

Gamma Radiation from the Plane of the Galaxy

The OSO-3 telescope measured detectable intensities of 7-radiation

emitted along the galactic equator at all galactic longitudes. These
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measurements are summarized in Figure 1, taken from a final report on the

observations (Kraushaar et al. 1972). The variation in counting rate of the

instrument is shown as a function of galactic latitude for six 600 intervals

of galactic longitude. For comparison the authors have indicated by the

histogram the expected rates, assuming that the radiation originated in colli-

sions of cosmic-ray nuclei with interstellar gas. The galactic distribution

of gas was obtained from 21 cm measurements of neutral hydrogen. The agree-

ment between the expected intensity and their observations is good, with the

exception of the region near the galactic center. In this region, they found

that the measured intensity was significantly above the calculated value.

Because the radiation appeared to be associated with diffuse emission from the

plane, they expressed it in terms of an equivalent line intensity (y/cm2 -sec-rad)

for an apparent width of ± 150 in latitude. For longitudes 3C<P I < 3300,

they measured an average integral intensity of (3.4 ± 1.0)xlCT5 7/cm2-sec-rad

for energies above 100 MeV; whereas in the vicinity of the galactic center,

they found a broad maximum along the plane with an intensity of

(1.1 ± 0.5)x104 7/cm2 -sec-rad.

As the angular resolution of the detector of OSO-3 was about ± 150, the

width of the apparent band of emission in directions away from the galactic

center could have been almost entirely due to instrumental effects. However,

the broad maximum in intensity, observed along the galactic equator in the

direction of the center, could not be attributed entirely to instrumental

effects.

Ogelman (1969) suggested that the distribution of 7-ray emission from

the plane could be accounted for by the distribution of known X-ray sources,

assuming that they emitted photons with a hard spectrum, - E -2 in differential

intensity. This suggestion could not be tested in greater detail by the OSO-3

detector because of its limited angular resolution.



Initial measurements at higher angular resolution were made predominantly

in the northern hemisphere. Most of these instruments employed multi-plate

spark chambers as their prime detector, which permitted angular resolutions

better than ± 3'. In some early reports, evidence was presented fo: emission

of 7-rays from the plane of the galaxy in the vicinity of Cygnus (e.g., Valdez

and Waddington 1969, Frye and Wang 1969, and Hutchinson et al. 1969). However,

these measurements were of marginal statistical significance and furthermore,

indicated an intensity considerably above the revised intensity measured on

OSO-3 (Kraushaar et al. 1972).

The higher intensities observed in the direction of the center of the

galaxy prompted balloon expeditions to the southern hemisphere by various

groups. Using a wire spark chamber with magnetic-core readout, the group at

the Goddard Space Flight Center investigated the galactic center region with

an estimated angular resolution of ~ 20 at 100 MeV. Their instrument was a

prototype version of the SAS-B 7-ray telescope which was launched late in 1972.

From a balloon flight conducted over Australia in 1969, Kniffen and Fichtel

(1970; also Fichtel et al. 1972) confirmed the high 7-ray intensity in the

vicinity of the galactic center (-250 CII ! + 200). Their results are

summarized in Figure 2, where they have summed their data in 20 and 60 bands

of latitude. On comparing the observed distribution with what they would have

expected for atmospheric 7-rays, they found about a four standard deviation

excess within ± 60 of the galactic equator. The measured "line intensity"

> 100 MeV, (2.0 ± 0.6)xlCr 4 7/cm2-sec-rad,is in agreement with that obtained

from OSO-3. Fichtel et al. also set an upper limit on the galactic flux emitted

between 50 MeV and 100 MeV. This limit led them to conclude that at least 50%

of the galactic flux comes from the decay of rro-mesons produced in cosmic-ray

collisions. They also searched for possible point sources in this vicinity

and were unable to detect any at a sensitivity of about 3xl - s5 7/cm2 -sec

above 50 MeV.



Three groups using balloon-borne instruments sensitive to photons > 100 MeV

have failed to detect diffuse emission from the galactic plane near the galactic

center. The first group, a collaborative effort between Case-Western Reserve

University and the University of Melborne, has reported results from a series

of 3 balloon flights over Australia, during an investigation of 7-rays in the

southern hemisphere (Frye et al. 1971a). Their investigation was performed

with a multi-plate spark chamber, and data were recorded on photographic film.

They estimate their angular resolution to be , 20 averaged over a typical

spectrum for energies > 100 MeV. The intensity of 7-rays observed during these

flights is shown plotted against the sine of galactic latitude in Figure 3,

where the bin widths have been corrected for exposure and atmospheric contribu-

tions. Events specified as "R" refer to those exhibiting a straight single

track emerging from one of the conversion layers in the spark chamber. The

summed data for the 3 flights are shown in parts G and H of the figure and

are compared with the enhancement expected along the galactic equator, based

on the intensity reported by Fichtel et al. With the sensitivity of these

measurements, it is difficult to explain why the galactic emission was not

detected.

Another observation, which has recently been published, was performed by

the group at Minnesota (Dahlbacka et al. 1973). They used an instrument

incorporating a nuclear emulsion stack as a converter for the 7-rays and a

narrow-gap spark chamber to identify the proper events in the emulsion. With

this technique an angular resolution better than 10 at energies > 100 MeV can

be achieved. The region of the galactic center was investigated during a

balloon-flight over Australia in 1970. The number of events observed as a

function of galactic latitude near the galactic center is shown in Figure 4.

The upper plot was derived from measurements made on events located in the

emalsion stack, whereas the lower plot was obtained from measurements of the
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spark chamber photographs (N 30 resolution). Shown by the dashed curves are

the expected numbers of events, assuming that they are atmospheric in origin.

The distributions do not provide any evidence for emission from the galactic

plane, although the upper limits set by the observations are not inconsistent

with the intensities reported by Kraushaar et al. and Fichtel et al.

The third group, from the University of Southhampton (Browning, Ramsden

and Wright 1972), has reported evidence for point sources of 7-rays along the

galactic plane near the center. They claim that these sources can account for

the apparent diffuse intensity observed from the plane, and furthermore, that

there is no residual diffuse intensity after the sources are subtracted. I

shall return to these results later.

The above discussion indicates that there still appears to be some dis-

agreement between the various experiments. Two recent measurements, made at

energies significantly below those we have discussed, have helped to clarify

the situation. Both were made over Argentina in the late fall of 1971 during

the expedition "Galaxia '71." The first was performed by H. Helmken and J.

Hoffman of the Smithsonian Astrophysical Observatory using a large area gas

Cerenkov counter which employed a plastic scintillator as the converter for

photons above 15 MeV. Although the instrument has good rejection properties

for various backgrounds, it suffers from its relatively poor angular

resolution, N 300 FWHM. This requires that in searching for continuous emission

from a.possible gamma-ray source, measurements must be made both on and off the

source in order to determine the background level. From two balloon flights,

Helmken and Hoffman (1973)have reported that they detected a 3.8 a excess from

the direction of the galactic center. Due to their detector's broad angular

resolution, they were unable to determine whether the excess came from point

sources near the cente; or whether it could be attributed to emission from

along the galactic plane.
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The other experiment was performed by R. L. Kinzer, N. Seeman and

myself at the Cosmic-Ray Laboratory (Chief Scientist, M. M. Shapiro) at NRL.

(A detailed description of this experiment will be published in Ap. J. and can

also be found in the Proceedings of the 15th International Cosmic Ray Conference.)

Our experiment was similar in design to that flown by the Minnesota group; it

incorporated a stack of nuclear emulsions with a wide-gap spark chamber in order

to unambiguously identify the gamma-ray interaction, as well as to provide an

angular resolution of N 1l o. The difference between this instrument and the

one flown by the Minnesota group resides in its energy range. Whereas the

Minnesota detector had a threshold energy of about 100 MeV, our instrument had

a low-energy threshold near 10 MeV and was relatively insensitive to photons

? 200 MeV. The lower threshold was attained by design features which restricted

the amount of material between the spark chamber and nuclear emulsion stack,

reducing the scattering of the particles considerably and permitting low-energy

electrons to be followed back into the emulsion.

The NRL experiment was flown to an atmospheric depth of 2.5 g-cm- 2 and

was pointed in the direction of the galactic center. The distribution of 7-rays

as a function of galactic latitude was obtained from a partial analysis of

events located in the stack of emulsion and is shown in Figure 5. Plotted are

the number of 7-rays observed as a function of galactic latitude for 30 and 10

intervals. The curves superimposed on the histogram were normalized for IbII I> 60
and show the expected number of events, assuming the 7-rays were entirely of

atmospheric origin. Evident is a significant excess of events within ± 30 of

the galactic equator; 32 events were observed whereas only 13 were expected.

The probability of randomly obtaining this excess of events is less than 10- .

The distribution of 7-radiation along the plane appears to be considerably

narrower (~ 30 wide) than measured by either the OSO-3 or Goddard detectors.
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From the measurements which I have discussed above, an integral spectrum

for y-rays emitted along the galactic equator in the vicinity of the galactic

center can be constructed. This spectrum is shown in Figure 6. There is good

agreement between the intensities measured by Kraushaar et al. and Fichtel et al.

near 100 MeV. As mentioned earlier, the upper limit set by Minnesota is con-

sistent with these measurements. Plotted at 15 MeV are the integral fluxes

determined from the NRL observations for two assumed emission spectra, nro-decay

from cosmic-ray collisions with interstellar gas and a power-law representative

of Compton collisions of high-energy electrons on starlight and microwave

radiation. Due to its design, the NRL instrument is more sensitive to lower

energy photons; therefore the estimated flux for a power-law spectrum is lower

than that for the harder no0 -spectrum. Shown by the dashed lines are extra-

polations of these measurements to higher energies. Within the uncertainties,

our measurements and those at higher energies indicate that the n-mechanism

can account for the observed emission; however, as shown by the dotted-dashed

curve, .a spectrum with equal contributions from both To and power-law

production mechanisms provides a better fit to the observations. The flux

measured by Helmken and Hoffman, if attributed entirely to emission from the

plane, is higher than our observations and requires a much larger contribution

from Compton collisions or Bremsstahlung.

The upper limit set by Frye et al. is in apparent contradiction with the

other observations above 100 MeV, assuming that the emission comes from a

narrow band along the galactic equator. This upper limit is consistent with

our measurements at lower energies only for a fairly steep energy spectrum.

However, preliminary spectral information obtained from our data appears

inconsistent with such a steep spectrum.
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Suggested Point Sources of 7-rays in the Vicinity of the Galactic Center

Frye et al. (1969) reported the first evidence for emission from a point

source in the vicinity of the galactic center. The source was designated

Sgr y-l and was reported to have been observed on each of 3 balloon-flights

(Frye et al. 1971a). The combined statistical significance for all three

observations was about four standard deviations. Subsequently, this group

reported the observation of three additional sources, designated as G7 2+3,

Gy 341+1 and Libra 7-1. The first two had a combined significance of about

4a over background, after data from all three flights were summed. The third

source was observed with a significance of 6a during one of their flights,

but had not been observed by them during an earlier exposure. Table 1

summarizes the data on these possible sources. Other possible sources in

the vicinity of the galactic center have been reported by the group in

Southhampton (Browning et al. 1972); however, their evidence is of marginal

statistical significance. Data on these possible sources, as well as one

mentioned by Dahlbacka et al. (1973) are also given in the Table.

The region about the galactic center was investigated with the NRL tele-

scope for emission of 7-rays with energies > 15 MeV from point sources. A

galactic map of the arrival directions of the observed y-rays is shown in

Figure 7. There is a concentration of events along the galactic equator

between 3500 and 3600 in longitude, but limited statistics preclude the

possibility of attributing, with certainty, this concentration to one or more

point sources. However, if it were due to two equally intense point sources,

their estimated fluxes above 15 MeV would each be , 6 x 10- s y/cm2 -sec. This

same region is known, however, to contain an enhanced columnar density of

atomic hydrogen (see e.g. Garmire and Kraushaar 1965) and therefore might be

expected to exhibit an increased emission of no-decay y-rays resulting from

collisions with high-energy cosmic-rays.



Table 1

SUSPECTED POINT SOURCES NEAR GALACTIC CENTER

Galactic Coordinates Flux > 100 MeV NRL Results (x l0 + 5 7/cm2 s)

Reported by Identification II (x 10 +  y/cm2 s) > 10 MeV* > 15 MeV**

Case - Sgr. y-l 00 - 180 1.5 ± 0.5 < 16 < 10

Melbourne

(rye 2+ 20 + 30 1.5 0.5 < 22 < 6
(Frye (GX 1+?)
etal.) Gy 341+1 341 + 10 1.6 ± 0.5 < 36 < 12

(GX 340-2?)

Libra y-1 4o + 00 2.4 ± 0.6 < 25 < 8
(PKS 1514-24?) < 1.5

Southhampton 2U 1833-05? 26.50 + 1.50 2.9 ± 0.8 < 35 < 12

(Browning 2U 1813-14? 17.50 + 3.50 1.8 ± 0.4 < 43 < 8
et al.)

2U 1728-16? 9.50 + 6.50 2.1 ± 0.6 < 47 < 6

Minnesota ? 3520 + 160 2 - 5 < 32 < 8

(Dahlbacka
et al.)

Angular resolution - 100

Angular resolution - 10 O
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None of the locations listed in Table 1 for possible y-ray sources shows

a significant concentration of events in Figure 7 (excluding Libra y-l). A

map of events obtained from a separate exposure to Libra y-l is shown in

Figure 8. Again, there is no evidence for an excess in the direction of the

suspected source. These exposures, therefore, failed to confirm the existence

of any of the suspected sources. Upper limits (95% confidence level) placed

on their intensities > 15 MeV are given in the Table. Limits placed on the

fluxes above 10 MeV, also shown in the Table, were derived from a broad resolu-

tion survey (N 100) using only measurements from the NRL spark chamber. These

limits indicate that if the sources are real, they must either be variable or

their differential emission spectra must be significantly harder than a power-

law in energy cE -2 .

O'Mongain (1973; see also Hearn 1969) has recently studied the statis-

tical methods employed in analyzing data for sources of y-ray emission. He

concludes that in many cases authors have underestimated the probability that

the suspected sources could have been generated by statistical fluctuations.

The Crab Nebula and its Pulsar

The Crab Nebula has been a target of y-ray investigations for many years.

However, prior to the discovery of the pulsar near the center of the Nebula,

these investigations had failed to detect a significant signal from the Crab.

Upper limits to the continuous emission above 100 MeV were placed at about

2 x 10- s 7/cm2-sec (see e.g. Frye and Wang 1969).

The existence of the pulsar gave 7-ray astronomers an added dimension to

investigate. Assuming that a large fraction of the energy emitted by the Crab

was pulsed, then measurements performed at N 1 msec resolution would benefit

from the reduced background. In 1969, about one month after the observed

"glitch" in the pulsar frequency, our group at NRL searched for emission of

pulsed y-rays above 10 MeV during a balloon flight over Texas (Kinzer et al.,
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1971a). The initial study was performed at about 100 resolution and provided

evidence that pulsed y-rays were emitted in phase with the optical peaks.

Results from this study are shown in Figure 9, where the time of arrival of

events originating < 100 from the Crab are plotted in part a) against the tulsar's

optical phase; for comparison, the time of arrival of "background" events

(> 100 from the Crab) is shown in part b). The evidence was of marginal sta-

tistical significance and prompted a more detailed study of the data at higher

angular resolution using the stack of emulsions actively incorporated into the

design of the telescope. The directions of - 50% of the events occurring close

to the times of arrival of both the primary and secondary optical peaks were

determined to within about 20 from measurements in the emulsion; however there

wasn't a significant concentration near the Crab (Kinzer et al. 1971b). This

apparent disagreement with our earlier suggestion could be explained, however,

as being due to the differing energy thresholds of the two samples of data.

Indeed, a subsequent study of only low-energy events observed in the spark

chamber confirmed the evidence for pulsation and furthermore, indicated that

the pulsed emission at 7-ray energies may exhibit sub-structure with widths of

N 0.5 msec. (Kinzer et al. 1973).

This suggestion of emission at the lower 7-ray energies prompted Albats

et al. (1972) to alter their telescope in order to permit 7-rays with energies

as low as 10 MeV to be detected. Their results from an exposure to the Crab

are shown in Figure 10 for y-rays with energies between about 10 and 30 MeV.

Two samples of data are shown which have slightly different selection criteria.

Both exhibit a striking excess within about 1 msec of the primary radio peak.

Conspicuous by its absence, however, is any evidence of a pulse in the vicinity

of the secondary radio peak. This is to be contrasted with measurements in

the 100-400 keV region shown in Figure 11 and obtained by Kurfess (Kurfess and

Share 1973). In this lower-energy domain the secondary peak and interpulse
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region between the primary and secondary pulses contribute a substantial

fraction of the X-rays emitted by the pulsar. The primary X-ray peak is found

to occur within 0.5 msec of the primary optical peak. This suggests that the

radiation emitted, from the radio band up to the high energy X-ray band originates

from a region no greater than about 150 km in extent; this distance is about

ten percent of the radius of the speed of light cylinder.

The close relationship in the phase of the primary peak appears to pergist

up to photon energies near 1 GeV and perhaps higher. Recent results from an

experiment performed by the group at Cornell are shown in Figure 12 (McBreen

et al. 1973). The measurements were made at energies above N 200 MeV using a

gas Cerenkov counter having a sensitive area of about 45,000 cm2 . In the

energy range above 700 MeV, significant peaks were observed at both the location

of the primary optical peak and secondary peak. In addition the peak coincident

with the primary optical pulse appearedto have an intrinsic width - 0.7 msec.

This is narrower than has been observed at optical and X-ray energies. Similar

structure is also apparent in the lower energy range between ,240-700 MeV, but

is less significant statistically. The authors point out the possible existence

of pulse structure in the interpulse region between the main and secondary peaks.

Additional evidence for structure outside of the main peaks was reported by our

group at NRL (Kinzer et al. 1973).

Although questions remain concerning the shape of the pulsation and

possible variability, evidence is mounting supporting the existence of 7-ray

pulsations from the Crab. In order to illustrate the compelling nature of the

evidence, I have summed in phase the 1 msec resolution data of NRL, Case-

Melbourne and Cornell. This summation is shown in Figure 13 where the data

have been combined in 3 msec bins centered on the main optical peak. The

ratio of the average number of events in 3 msec bins in the pulsed region to

the average number in the background region is 1.30 ± 0.08. Furthermore, the
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bin centered on the main optical peak stands more than 7 standard deviations

above the background level.

Measurements of the intensity of pulsed y-rays are summarized in Figure 14.

The dashed line represents an extrapolation of a power-law fit to X-ray obser-

vations of the total emission from the Crab. The low-energy data, up to a few

MeV, come from measurements with large area Nal crystals or plastic scintil-

lators. At higher energies visual techniques using spark chambers were employed,

with the exception of the recent measurements by Helmken and Hoffman (private

communication) and McBreen et al. (1973) in which gas Cerenkov counters were

used. In contrast to their measurement between 10 and 30 MeV, the higher

energy measurement of Albats et al. does not show a significant pulse within

1 msec of the main radio peak; it does, however, show an excess in the broad

pulsed region. Our upper limit plotted at 40 MeV comes from the emulsion

analysis (Kinzer et al. 1971b). The upper limit above 100 MeV previously re-

ported by the Saclay-Palermo-Milan collaboration (Leray et al. 1972) has been

superseded by a recent measurement giving evidence for pulsed emission above

20 MeV (Parlier et al. 1973). It is apparent from the mixture of upper limits

(2a) and claimed observations,that the sensitivity of the individual experi-

ments require about an order of magnitude improvement in order to permit de-

tailed studies of the Pulsar.

Observations in the hundred MeV region by the Cornell group (McBreen

et al. 1973) indicate that the total emission of the Crab Nebula is consistent

with the power-law shown in the Figure. This suggests that about half of the

0.1 - 1 GeV emission from the Crab Nebula comes directly from the Pulsar. In

the 10-100 MeV region only upper limits or marginal evidence for continuous

emission from the Crab have been obtained (see e.g., Frye and Wang 1969, Kinzer

et al. 1971c, and Parlier et al. 1973). These limits are consistent with the



power-law extrapolation and also suggest that the pulsed emission represents a

large fraction of the total emission from the Crab.

Diffuse Cosmic Gamma Radiation

One of the most difficult areas of experimental y-ray astronomy is the

investigation of the primary diffuse radiation. The non-visual detectors, such

as NaI and CsI crystals, which are used at low energies are susceptible to

various backgrounds. These backgrounds can be caused, for example, by in-

efficiencies in anticoincidence counters, as well as by radioactive buildup

from proton spallation and neutron interactions in the crystal and surrounding

material, (see e.g, Pal 1973, Kasturiranjan and Rao 1971, Dyer and Morfill

1971, and Fishman 1972). At energies above 10 MeV, where both "non-visual"

counter telescopes and "visual" spark-chamber telescopes have been employed,

background contamination is still a problem. Inefficiencies in anti-coincidence

counters, which reject the intense fluxes of charged particles, can be a major

problem in counter telescopes (see e.g, Valentine et al. 1970). Although spark-

chamber telescopes are capable of discriminating against this type of background,

they may be susceptible to other more subtle forms, for example, local produc-

tion of y-radiation. In addition, detectors flown from balloons within the

atmosphere, or from low orbiting satellites, must contend with the secondary

atmospheric y-radiation.

However, evidence continues to be compiled indicating the existence of a

general diffuse glow of photons from the keV region up to energies of a few

hundred MeV. A power-law in energy is capable of fitting the general shape of

the spectrum up to about one MeV, but there are suggestions of some departures

from this spectrum. These departures include a possible steepening in the

spectrum near 40 keV (Schwartz, Hudson, and Peterson 1970) and a possible

flattening above 1 MeV (Trombka et al. 1973).
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In this section,I shall summarize the measurements made at energies above

10 MeV. Until recently, only upper limits to the intensity of the isotropic

component of cosmic y-rays had been reported (Clark, Garmire and Kraushaar

1968; Frye and Wang 1969; Bratolyubova-Tsulukidze et al.1970; Valentine, Kaplon

and Badhwar 1970; Kinzer, et al. 1971c). Further analysis of the data from

0S0-3 has convinced Kraushaar et al. (1972) that the residual rate that their

detector observed in directions away from the galactic plane was due to cosmic

y-radiation. The fact that this residual rate remained constant over a wide

range of geomagnetic cut-off rigidities, and therefore charged particle in-

tensities, was an important consideration in the conclusion of Kraushaar et al.

Their detector also provided an indication that the spectrum of the radiation

was softer than the spectrum from either the horizon of the earth or from the

galactic plane, both believed to arise predominantly from no-decay y-rays.

A recent measurement from within the atmosphere using a balloon-borne

telescope has led to the suggestion by the group at the Max Planck Institute

(Mayer-Hasselwander et al. 1972) that the intensity of diffuse y-rays in the

vicinity of 30-50 MeV is considerably above an extrapolation made between

X-ray data and the 100 MeV observation of Kraushaar et al. The detector flown

by the Max Planck group incorporated a multiplate spark chamber with magnetic

core readout. During two balloon flights over Texas in 1971, their detector

measured the intensity of y-rays as a function of atmospheric depth. These

measurements are plotted in Figure 15 and provide evidence for a departure

from the expected growth curve of atmospheric y-rays. By extrapolating the

measurements made between - 50 g-cm- 2 and - 2 g-cm- 2 to the top of the atmos-

phere, the authors found a residual rate over 10 standard deviations above

zero. There were some differences in the absolute intensities measured

during the two flights; in addition a fairly large uncertainty, about 0.5 g-cm -2 ,



was present in the measurement of the atmospheric depth. However, the authors

did not feel that these uncertainties affected their conclusions concerning the

existence of a cosmic diffuse component. They also presented evidence that the

spectrum of this component was appreciably softer than the atmospheric spectrum.

This conclusion was reached on the basis of measurements made on the distribu-

tion of the opening angles of pairs observed in the spark chamber. However, the

observed increase in the average opening angle appears to occur abruptly, at

depths less than about 3 g-cm-2 , and is therefore suspicious.

During the NRL balloon flight over Argentina in 1971, an investigation was

also made of the growth of atmospheric y-rays as a function of depth, in an

attempt to establish the existence of the primary diffuse component. Advantage

was taken of the increased cutoff rigidity (11.5 GV), which reduced the inten-

sity of secondary radiation. The data are shown in Figure 16, where the count-

ing rate of electron pairs is given in the left ordinate and the estimated

intensity of vertically incident y-rays is shown on the right. Data obtained

over Texas (R > 4.5 GV)are also displayed for comparison. A linear extrapo-

lation of the data over Argentina gave evidence for a residual rate above the

atmosphere which was about 3.5 a above zero (Share, Kinzer and Seeman 1972 and

preprint 1972). An upper limit obtained from our Texas data (Kinzer et al.

1971c) is consistent with this residual rate.

Due to the difficulties in making measurements of this kind, we made a

detailed investigation of various possible sources of background which might

have simulated this residue. Among those investigated were local sources for

producing the residual photons, such as the pressure vessel enclosing the system,

and atmospheric y-rays incident from the horizon. From our investigations we con-

cluded that these sources were not likely to have contributed appreciably to

the residue.
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A schematic drawing of the NRL telescope is shown in Figure 17. Downward

y-rays are detected after they convert in a stack of nuclear emulsion and

produce either Compton electrons or electron pairs which trigger the propor-

tional counter (P) and two scintillators (B), without the presence of an

accompanying particle in any of the anticoincidence scintillators (A). The

absorption-Cerenkov counter (C) restricts detected y-rays to those below

N 200 MeV; it also rejects about 50% of upward moving y-rays converting in the

Plexiglas block (C) and producing upward-moving low-energy electrons which can

also trigger the telescope. The remaining upward-moving electrons are a likely

source for the residual rate of y-rays which we observed. However, as I

mentioned above, only events appearing to be downward-moving electron-pairs

were used in our growth curve. How then can these upward-moving electrons

simulate downward-moving pairs? If the electrons are of low-energy, they can

be scattered appreciably in the emulsion and then emerge in the downward

direction; the event would then appear to be a downward pair of low energy.

Another source for these low-energy electrons which can enter the detector's

geometry is the splash albedo from the atmosphere. These electrons can pass

through the space between the active walls of the spark chamber and the anti-

coincidence cup surrounding the Plexiglas block. They will be detected and

appear as downward pairs if they are scattered back out of the emulsion and

have sufficient energy to reach the bottom coincidence counters (B).

We estimate that the combined rate from both of these types of events,

which imitate downward electron-pairs, can contribute appreciably to our

residual rate of pairs above the atmosphere. For this reason, we have con-

cluded that our measurement must be interpreted only as an upper limit to the

true diffuse 7-ray intensity.
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The measurements of diffuse 7-radiation above 1 MeV are summarized in

Figure 18. The solid line represents an extrapolation of the fit of X-ray

data to a power-law spectrum (Kasturirangan and Rao, 1972), while the dotted-

dashed curves represent the uncertainty in this extrapolation. Measurements

above 10 MeV are typically obtained over a wide range in energy; this range is

shown by the dashed lines and the points have been plotted at the median

energy photon detected for an assumed E- 2 spectrum. The data above 1 MeV

from ERS-18 (Vette et al. 1970) were found to have been in error and have been

superseded by measurements from Apollo 15 (Trombka et al. 1973; see also Trombka

and Peterson in this volume). The measurements from Apollo 15 indicate that

the energy spectrum of low-energy 7-rays flattens above about 500 keV; above

1 MeV their measured intensities are still higher than the upper limits

reported by Bratolyubova-Tsulukidze et al. (1970) and by Daniel, Joseph, and

Lavakare (1972).

The intensity reported by Mayer-Hasselwander et al. at higher energies

appears consistent with the data from Apollo 15. However, there may be a

systematic error in the intensity given by Mayer-Hasselwander et al. They

report that their measurement of the atmospheric 7-ray intensity is about 60%

of the value calculated by Beuermann (1969); however, measurements by other

groups indicate that the calculated flux may be too low (e.g. Fichtel, Kniffen

and Ogelmann 1969; and Seeman, Share and Kinzer 1973). This suggests that the

primary diffuse intensity reported by Mayer-Hasselwander et al. may therefore

be low by about a factor of two.

The upper limit determined by our measurement over Argentina, although

consistent with the reported intensities, suggests that the flux of diffuse

7-rays near 30 MeV is lower than reported by either Trombka et al. or Mayer-

Hasselwander et al. The fluxes reported by these authors ar e considerably

above a power-law spectrum fit to both the X-ray observations and the 100 MeV
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measurements of Kraushaar et al. 1972. This had led to suggestions that an

additional component may be needed to explain the results from 1-50 MeV.

Theoretical models for generating this additional component have been recently

summarized by Silk (preprint 1973), Stecker (1973), and Strong et al. (1973).

Further discussion can also be found in other sections of this volume.
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Future Observations

Gamma-ray astronomy has finally emerged as an observational science.

However, as is apparent from this summary of recent measurements, an improve-

ment in sensitivity is required in order to permit more detailed investigations.

The new generation of satellite detectors, ESRO's TD-1A and COS-B, and NASA's

SAS-B represent the first step in providing the increased sensitivity. This

is primarily due to the longer observation periods and lower 7-ray background

intrinsic in satellite observations.

These detectors should be able to measure the energy spectrum of the diffuse

radiation > 30 MeV and to begin to investigate its spatial isotropy. They should

also have the sensitivity to verify the existence of the various possible point

sources of 7-rays reported from balloon-borne observations and, furthermore, to

study their energy spectra and to establish whether or not they are variable.

There is also little doubt that these detectors will be able to investigate

emission of diffuse 7-radiation from the galactic plane and to map its distri-

bution at resolutions of - 30. These measurements of high-energy photons from

the galactic disc, like the ones made 25 years earlier in the radio band, will

substantially further our knowledge of the distribution of matter, magnetic

field strengths and cosmic-ray fluxes in the galaxy.

Continued work at balloon altitudes should be encouraged, especially in

the light of the reduced funding for "expensive" satellite programs. These

balloon-borne instruments should be designed with improved resolution in energy,

angle and timing in order to help compensate for the atmospheric background

and to permit continued investigation of periodically pulsing objects such as

the Crab Pulsar. Improved sensitivity for balloon-borne detectors should

follow naturally from the development of high-altitude super-pressure balloons

and from observations conducted at high geomagnetic cutoff rigidities.
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Figure Captions

Figure 1 Variation of the counting rate of cosmic y-rays observed from OSO-3

as a function of galactic latitude for successive 60
0-intervals of

galactic longitude.

Figure 2 Ratio of observed line intensity of > 100 MeV y-rays to expected

background intensity for - 2 5 0 jII + 200, plotted as a function

of galactic latitude, bII (from Fichtel et al. 1972).

Figure 3 Variation in y-ray intensity scanned across the galactic equator

near the galactic center by Frye et al. (1971a). The dashed curves

in parts G and H represent the intensity reported by Fichtel et al.

(1972).

Figure 4 A histogram of the number of y-ray events in strips parallel to the

galactic plane reported by Dahlbacka et al. (1973). The upper

histogram is for events found in the emulsion and the lower one is

for events observed in the spark chamber. The dashed curves repre-

sent the expected shape if there were no excess of emission from

the galactic plane.

Figure 5 Distribution of observed y-rays within a) 30 and b) 10 bands of

galactic latitude for 3200 < II < 400 as reported by the NRL group.

The curves are normalized to the observed events for IbIIf> 60

and represent the distribution expected for y-rays of atmospheric

origin.

Figure 6 Measurements of the flux of y-rays from the galactic plane near the

center of the galaxy. The NRL measurements are given for three assumed

spectra and are extrapolated to higher energies.



Figure 7 Galactic map of arrival directions of y-rays reported by the NRL

group. The RMS uncertainty in arrival direction is shown by the

open circles. Regions within the dashed curves had relative ex-

posures > 75% and > 50%.

Figure 8 Map of arrival directions of y-rays observed in a search by the NRL

group for the variable source Libra y-l.

Figure 9 Number of y-ray events > 10 MeV observed by Kinzer et al. (1971)

relative to the optical phase of NP0532. a) Events pointing within

100 of the Crab; b) events pointing outside 100 from the Crab. The

dashed lines give the mean numbers (N) of y-rays/time-bin and the

errors shown are ±f 17.

Figure 10 Number of y-ray events 10-30 MeV observed by Albats et al. (1972)

within 150 of the Crab plotted relative to the radio phase of NP0532.

Figure 11 The X-ray "light curves" for photons from the Crab Pulsar between

100-400 keV observed by Kurfess (1971) during two balloon flights

on a) Oct. 10, 1970 and b) Oct. 21, 1970.

Figure 12 Phase histograms of two independent samples of y-ray events observed

with the Cornell 4.5 m2 Cerenkov telescope (McBreen et al. 1973).

The events in the upper histogram originated within 20 of the Crab

Nebula, while those in the lower histogram within 10 of the Crab.

The arrival times of the optical main pulse and secondary pulse are

shown. The indicated background levels were derived from the events

recorded in the intervals 0-9 and 24-33 msec.

Figure 13 Summed phase histogram of y-ray observations of the Crab Pulsar

taken from Figures 9, 11, and 12. The original data were plotted

at 1 msec resolution, but are summed here in 3 msec bins in order to

display the broad features of the observations.
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Figure 14 Measurements of the time-averaged pulsed intensity of NP0532. The

straight line represents an extrapolation of a power-law fit to

the total emission spectrum of the Crab at X-ray energies.

Figure 15 Counting rates of electron pairs as a function of residual atmos-

phere observed during two balloon flights conducted by the Max

Planck Institute over Texas. The full lines are fits to the data

deep in the atmosphere and represent the growth of secondary

y-rays. The dashed curves are fits to all the data obtained at

depths ! 50 g-cm-2, assuming the presence of an extraterrestrial

component of y-rays.

Figure 16 Vertical intensities of y-rays 10 < E < 200 MeV at rigidities

> 4.5 GV and > 11.5 GV as determined by the NRL group from the count-

ing rates of "electron pairs" observed in its wide-gap spark

chamber as a function of atmospheric depth. The lines are least

squares fits and the errors shown are statistical. (Not shown in

the rate 100 ± 13/min observed at 55 g-cm
- 2 for R > 4.5 GV.)

Figure 17 Drawing of the detector used by the NRL group showing an electron

pair in the wide-gap spark chamber (S.C.). (A) plastic anti-

coincidence counters; (E) emulsion stack 650 cm2 x 1.25 cm; (P)

multiwire proportional counter; (B) 2 plastic coincidence counters;

(c) absorption - Cerenkov counter of clear Plexiglas (15 g-cm-2).

Cerenkov light from up-coming particles is reflected by (R) onto

phototubes (not shown) imbedded in the block.

Figure 18 Measurements of diffuse cosmic y-radiation. Energy ranges for

observations > 10 MeV are shown and the fluxes are plotted at the

median energy photon detected for an assumed E-2 spectrum.
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8046 Garching bei Minchen,Germany
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Introduction

Since the IAU-Symposium No. 55 in Madrid, 1972 (Yash Pal, 1973,

G.G. Fazio, 1973), only little progress has been made in obtain-

ing new results on celestial gamma rays in Europe.

The gamma ray experiment S-133 on board ESRO's TD-1 satellite has

worked through its first period of operational life from March

1972 to October 1972, when the satellite went into hibernation. The

experiment has been activated again in February 1973 for a second

all-sky scan. For this second scan, the trigger counter thresholds

have been raised. It is hoped to thereby increase the gamma ray

energy required to trigger the experiment, thus providing a kind

of "two-color" all-sky scan in gamma rays together with the 1972-

data.

Data analysis of this experiment has been very slow and tedious and

is not as yet in such a state that first results could be presented.

This is, in part, due to the fact that TD-l's tape recorders failed

after the first two months of operational life and the tapes of the

very good real-time coverage provided by ESRO were slow in arriving.

A more serious problem, however, was the severe background problem

encountered. This requires that all spark chamber images be visually

inspected and this work has as yet not been finished.

In what follows, the results on measurements of the diffuse flux,

and on the Crab pulsar NP 0532 are updated. The various reports on

point sources discovered are, in the author's opinion, of a pre-

liminary nature and require confirmation by independent measurement

with good statistics.



2

Diffuse Flux

The present status of gamma ray measurements concerning the diffuse

flux is well illustrated by Fig. 1 (taken.from Trombka et al., 1972),

where the results of Vedrenne et al. (1971) and Mayer-Hasselwander

et al. (1972) are compared with the results of Golenetskii et al.

(1971), OSO-III (Kraushaar et al., 1972), and Apollo 15 (Trombka et

al., 1972) . (See also the paper of Peterson and Trombka, these proceedings.)

Apart from OSO-III, the results seem to indicate that these authors
3 E -2.1

find diffuse gamma ray fluxes in excess of the 25x10 3 ( - )
1 keV

spectrum proposed by Yash Pal (1973). It appears to be too early

to speculate in detail about the physical significance of this

at present still rather uncertain result. If all these findings

are confirmed, the diffuse gamma ray spectrum would exhibit a

shoulder below 100 MeV, as pointed out by Yash Pal (1973). It is

interesting to note that gamma ray production through the 1i-process
at various redshifts in the past should integrate up to just such

a shoulder(See paper of Stecker, these proceedings).

In this context, a remark concerning the analysis of gamma ray data

appears justified. In the domain where pair production is dominant

( 20 MeV), gamma ray astronomy experiments are triggered by the

diverging beam of electron-positron pairs that are created close to

the trigger-telescope. Multiple scattering causes these electrons to

diverge, and the solid angle of such an instrument is not well de-

fined.

Furthermore, if P is the probability that one of the two electrons

triggers the instrument, the total triggering probability will be

1 - (1-P)2 thus causing a significant enhancement of the probability

that a gamma ray incident at large zenith angles will actually

trigger the counter because one of the electrons was scattered into

the sensitive cone of the telescope.
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These considerations show that the energy-angle response function

a(E,0 ) of a gamma ray counter telescope cannot be separated into

one function of energy and another one dependent on angle only, as

was assumed in the case of the OSO-III data analysis (Kraushaar et

al., 1972). Rather, the effective solid angleCl defined as

will remain a function of energy, increasing with decreasing energy.

This has the interesting consequence that the ratio of line flux

factor to isotropic flux factor Gline/Giso as defined by Kraushaar

et al. (1972) will depend upon energy and thus on the assumptions

on the line flux and isotropic flux energy spectra, respectively.

This has to be borne in mind when comparing the results of OSO-III

of the galactic plane emission with that of high galactic latitudes.

Crab Pulsar NP 0532

In recent months, two results have been published that appear to

establish the Crab pulsar spectrum in the 10-100 MeV energy range.

They are the measurements of Albats et al. (1972), and of Parlier

et al. (1972). Fig. 2 shows the Crab pulsar spectrum as presented

in the paperf the Saclay-Milan-Palermo group (Parlier et al. 1972,

see there for the references. Measurement point no® is that of

Albats et al., 1972).

These results are significant in two respects:

First, the ratio of the continuous to pulsed flux from the Crab

is about a factor of 6 at .1 MeV, and this decreases to less than

half that value at 20 MeV. Indeed, all the flux > 20 MeV could be

pulsed.
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Secondly, while the interpulse appears to be dominant in the low

energy gamma ray domain (Kurfess, 1971), both Albats et al. (1972)

and Parlier et al. (1972) claim that the main pulse is dominant

in their results. It would certainly be very interesting to study,

with good statistics, the transition between these two different

results in the 1-10 MeV region.

( See also papers of Fazio, Kniffen and Share, these proceedings.)

Conclusion

Gamma ray astronomy has been, and still is, a slowly developing

branch of science. This is due to the very great experimental dif-

ficulties. Furthermore, gamma ray observations cannot be carried

out from very simple, or small, spacecraft. It appears that the

development of the field has also been slowed down by the compara-

tively large amount of time lost in the effort to obtain access to

satellite space.
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Preliminary Results on SAS-II Observations
of > 30 MeV Gamma Radiation

D. A. Kniffen, C. E. Fichtel, and R. C. Hartman

NASA/Goddard Space Flight Center
Greenbelt, Md. 20771

1. Introduction. It was Morrison (1958) who first pointed out that

the low interaction cross section of the high energy gamma ray make it

a unique and valuable medium for obtaining information on many of the

major energy transfers which take place in the Universe. Furthermore,

its chargeless state allows the information to be related to the regions

in which the processes are occurring. In papers presented at this

conference Stecker, Ginzburg and Clayton have pointed out that the

spectra obtained from the observations of energetic gamma radiation

may provide most important information concerning a number of astro-

physical problems. These problems include the study of the distribution

of high energynuclei in the Universe in space and time, the possible

existence of antimatter on a universal scale, the origin of the > 50 MeV

galactic emission observed by Kraushaar, Clark and Garmire (1973), and

other phenomena unique to large scale astrophysical bodies. In addition,

the field of high energy gamma ray astronomy provides an opportunity to

extend our knowledge of the electromagnetic phenomena for diffuse and

discrete source X-ray emission to high energies.

Within our own galaxy; high energy gamma rays speak directly to the

presence of energetic protons within discrete sources and in the galaxy
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as a whole through the broadly peaked but distinctive spectrum of

gamma rays produced by the high energy nucleons interacting with other

nucleons. In this way, the cosmic ray distribution throughout the

galaxy may be studied as well as the high energy particle gas surrounding

individual objects from which cosmic rays have come. The picture which

emerges will significantly aid in the understanding of the dynamics of

our galaxy and the origin of energetic charged particle cosmic rays.

Beyond our galaxy gamma ray observations serve as an indicator of

conditions existing in the cosmological past. In an expanding model of

the Universe, the density of matter is much greater in the past than it

is observed to be in the present epoch. Two of the processes expected

to be most likely producers of gamma radiation on the Universal scale

are nuclear interactions of energetic cosmic radiation with the inter-

galactic gas and nucleon-antinucleon annihilation. Both processes

produce a characteristic r7°-decay gamma ray spectrum in the rest frame,

but the energy is degraded by the cosmological redshift caused by the

expansion of the Universe. Hence, gamma ray astronomy can address

itself directly to the subject of cosmology.

Also expected to be important contributors to gamma ray production

are the electromagnetic interactions important in X-ray astronomy,

including the interactions of energetic electrons with matter (bremasstrahlung),

with cosmic photon fields (Compton scattering) and with magnetic fields

(breimstrahlung).

Within discrete stellar objects, in addition to these mechanisms

there are other processes unique to the objects which may produce
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detectable levels of gamma radiation. Examples of such possibilities

are the radioactive decay of the nucleosynthesis products as they are

explosively ejected in supernovae (Clayton, 1973) and short intense

burst of energetic photons emitted in the hydromagnetic shock wave

following a stellar collapse (Colgate, 1968). The detection of gamma

rays and the determination of their spectral characteristics during

such events would provide most important clues to the validity of the

theories which predict them.

The potential significance of gamma ray observations has led

a large number of groups to develop a variety of detectors for the

search of this rare photon in a very high background of energetic

charged particle cosmic rays. The first unqmbiguous positive observations

of extraterrestrial gamma rays above a few tens of MeV was made by

Kraushaar, Clark and Garmire (1973) with their OSO-3 gamma ray detector,

launched in 1968. This pioneering experiment measured a general diffuse

flux and an enhanced emission from the galactic disk gamma radiation

above 50 MeV. Theoretical models for the origin of these observation

fluxes have been difficult to obtain because of the limited angular

and spectral resolution of the OSO-3 experiment. Share (1973) has

reviewed other results obtained from a large number detectors flown

from balloons and satellites. Positive observations have been obtained

for the diffuse flux, the galactic disk emission and a large number of

discrete sources, but conflicting evidence between experiments in some

cases and marginal statistics in others has left a generally uncertain

picture with the possible exception of pulsed gamma ray emission from

the Crab nebula pulsar NP 0532 and the galactic plane emission.



In March of 1972, the first of the second generation of satellite

gamma-ray experiments was launched aboard the ESRO TD-1. The experi-

ment consisted of a 9-deck vidicon spark chamber gamma ray telescope.

On November 15, 1972, the SAS-II was launched into orbit with a larger

32 deck magnetic core digitized spark chamber. These instruments

should provide the sensitivity and angular and spectral resolution with

the inherently low background of a satellite experiment needed to

address many of the important questions in ganmma ray astronomy.

In this paper we will give a description of the SAS-II detector

and present some of the preliminary results we have obtained.

2. Experiment. Fig. 1 is a schematic view of the SAS-II telescope,

a thirty-two deck spark chamber with a scintillator-Cerenkov counter

charged particle triggering telescope and a large plastic scintillator

anticoincidence dome surrounding the entire experiment. Each spark

chamber module is separated from the next by a .03 radiation length

tungsten pair production plate. The tungsten plates serve as

scattering plates for the electrons following their formation,

allowing the energy of each electron and hence of the incoming gamma

ray, to be determined by analysis of the multiple scattering. This

information is also used to obtain a weighted bisector of the pair for

determining its arrival direction in spark chamber coordinates. A large

number of thin plates are used so that the electron pair can be clearly

identified and the arrival direction of the gamma ray can be accurately

measured. The signature required for a trigger of the spark chambers

is for a particle to pass undetected through the anticoincidence dome
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and to pass simultaneously (within about 500 ns) through the two

elements of one of the four scintillator-Cerenkov charged particle

telescopes. This coincidence triggers the application of high voltage

across the spark chambers and initiates the readout system.

Fig. 2 shows a photograph of a single wire grid module containing

two planes of 200 wires each on opposite sides of the frame. The wires

within a plane are parallel and orthogonal to the wires on the opposite

plane. Each grid wire is threaded through a ferrite core contained on

a shelf on the side of the frame. Two additional wires are threaded

through each core to readout those set during an event. As a spark

breaks down along the ion path remaining along the trajectory of a

charged particle, current flows along one or more affected wires in

each plane of the grid, setting one or more cores. The readout of such

set cores thus provides the coordinates of the charged particle.passage

through that modular deck.

If the distribution of set cores is plotted separately for each

of the two orthogonal planes, a picture is obtained such as that shown

in the Fig. 3, which is a reproduction of a 16 mm microfilm frame of

the two orthogonal views of a gamma ray pair production event. The

scale for the vertical axis is compressed by a factor of those relative

to the horizontal so incoming angles are exaggerated.

The flight unit was given a preflight calibration at a tagged

photon facility established for this purpose at the 170 MeV electron

synchrotron at the National Bureau of Standards in Gaithersburg. The

beam provides monoenergetic photons selectable over the 30-150 MeV
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energy interval. A very extensive calibration is currently underway

using the essentially identical flight spare experiment unit. Until

this calibration is complete the results must be considered preliminary

and flux and intensity values should be considered to be no better

than about a factor of 1.5.

The characteristics of the telescope include an area of about

540 cm2 , a solid angle of about 1/3 steradian, and an asymptotic high

energy pair production efficiency of 29 percent. Timing accuracy of

about 1 to 2 milliseconds allows a search for periodic emission.

Arrival directions for 100 MeV gamma rays may be measured to about

two degrees at 100 MeV. The energy threshold is about 30 MeV,

although it is not sharp. Differential energy measurements may be

made on 30-200 MeV gamma rays, and integral fluxes obtained for > 200

MeV gamma rays. A more detailed description of the experiment has

been given by Derdeyn et al. (1972).

The experiment was launched as the sole experiment aboard the

second of the Small Astronomy Satellites on November 15, 1972. The

orbital trajectory is essentially equitorial and approximately circular

at a height ranging from 440 to 610 km above the Earth's surface.

Fig. 4 gives an artist's concept of the telescope, surrounded by a

gold colored thermal blanket, sitting atop the spacecraft control

section. The satellite is spin stabilized with magnetic torquing

of commandable electromagnets against the Earth's magnetic field pro-

viding steering to any selectable point on the sky. Attitude is

determined by a magnetometer-sun sensor combination, and-to more
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precision by a star sensor, which is capable of determining the tele-

scope pointing direction to about a quarter of a degree, thus allowing

the directions of the gamma rays in spark chamber coordinates to be

transformed into celestial and galactic coordinates.

The viewing program has been chosen so as to examine each portion

of the sky with about a one week exposure, with early emphasis on those

regions of the sky expected to be most interesting in gamma rays.

Fig. 5 gives a view of the sky with the regions of the sky examined

to date with the 1/3 steradian field of view denoted by the cross

hatched area, with those regions for which extensive analysis has

been completely denoted by the double cross-hatching. Second week

exposures have already been obtained on the galactic center region

as well as the anti-center, Crab nebula region. The sensitivity of

the exposure to each of these points is determined by an analytical

program which takes into account all variable functions of the

experiment which affect the exposure, as well as the occulation by

the earth and folds these together with the angular response function

and projects them onto equal solid angle bins on the sky.

3. Data Analysis and Reduction. SAS-II data is recorded at a one

kilobit per second rate on redundant onboard continuous loop tape

recorders. Once per orbit the recorded data is transmitted at a 20

kilobit per second rate to a tracking station loaded near Quito, Equador.

Real time data taken before and after the recorder playback is used to
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correlate the spacecraft clock with the station clock. This provides

time in the data stream accurate to better than two milliseconds in

absolute time.

The data stream oontains, in addition to spacecraft time, the

spark chamber event data, experiment and spacecraft control section

housekeeping data (counter rates, voltages, currents, temperatures,

pressures, etc.) and aspect data from a digital solar aspect sensor,

two fluxgate magnetometers and an N-slit star sensor. Three orbits

of data per day are transmitted via transmission links directly to

the Goddard Space Flight Center (GSFC) to determine the aspect for

the purposes of planning any necessary maneuvers. Maneuvers of the

spin stabilized spacecraft are accomplished by command of electromagnet

torquing coils which provide fields which interact with the terrestrial

field to provide maneuvering rates of up to about 5.0 degrees a minute.

Analog magnetic tapes of the remaining orbits are shipped to GSFC

where time is correlated and the data placed in proper time sequence

with any overlapping data eliminated. The magnetometer, sun sensors

and star sensors are used to determine the spark chamber pointing

direction to an accuracy of about .25 degrees.

Analysis of the spark chamber data is made by an automatic pattern

recognition designed to recognize the readout patterns produced as

gamma rays interact in the tungsten plates to create electron-positron

pairs (See Fig. 3). An alternate mode for analysis of the event data

is made by interactive editing of the events with a graphics display

unit. Most of the results available at the present time have been

obtained using the latter mode.
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Events selected for editing have been carefully chosen to insure

that no ambiguities will be introduced into the measured fluxes by

misidentification of spark chamber events. The selection is based on

the following criteria: (1) only intervals which contain data taken

when the spark chamber axis points away from the Earth are chosen

for analysis; (2) only gamma-ray pair events are selected; (3) events

which may masquerade as pair events as a result of interactions in the

material of the sidewalls of the spark chamber are rejected for

analysis; (4) Events which set cores in the top grid are rejected to

provide a veto for the rare events which form in the small amount of

material between the coincidence counter and the spark chambers, and

(5) gamma rays arriving at very large angles with respect to the

detector axis are not included in the analysis. Edited events are

automatically processed to obtain the energy and chamber arrival

direction of each observed gamma ray according to procedures developed

in the analysis of balloon data as described by Fichtel et al. (1972).

The directional information is then combined with attitude and orbit

data to provide the gamma ray arrival direction in celestial, galactic,

geographic and geomagnetic coordinates. Events with zenith angles

greater than 90 degrees with respect to the outward radius vector of

the satellite position are rejected from further consideration for the

celestial analysis, safely avoiding the terrestrial horizon which lies

at zenith angles greater than 110.00.

The sensitivity of the telescope to each region of the sky is

determined by an automatic analytic program which checks against all
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status conditions which affect sensitivity. In addition the accumula-

tion is made differentially in time in order to include instantaneous

detector live time and to exclude those portions of the sky occulted

by the Earth.

4. Results. The results may be classified into three categories:

diffuse, presumably extragalactic gamma rays coming from regions of the

sky not associated with the galactic plane; gamma radiation from the

galactic plane; and discrete sources of energetic gamma rays.

(a) Diffuse gamma radiation. For the regions of the celestial

sphere which we have examined thus far, there seems to be a weak, but

finite component of high energy gamma rays which exists for regions

away from the galactic center. OSO-III, even with its much smaller

sensitivity 1.6 (cm2 sr efficiency) compared to about 30 (cm2 sr

efficiency) for SAS-II above 100 MeV, also indicated a finite, appar-

ently constant diffuse flux for regions of the sky which were far

enough from the galactic plane that no portion of the relative wide

angle of the OSO-III detector (-350) overlapped the galactic plane.

From observations that SAS-II has made, it now appears that in the

region -200 < 111 < +200, and bll > 00, the flux is already at the

background level at about b1 1 = +150. Data to be reported here comes

from the region of the sky centered at (ll1= 0, bll = +25). The

diffuse energy spectrum is presented in Fig. 6. Notice that the

spectrum is quite steep, steeper than other gamma ray spectra observed

on SAS-II or the earlier balloon work of the Goddard group (e.g. Fichtel



et al., 1969 and 1972), including the galactic center region,the Crab,

and the atmospheric secondary spectrum, upward or downward. The

integral flux above 100 MeV is (3.9 0.9 ) x 10-5/(cm sr sec) con-

sistent with the OSO-III result of (3.0 +0.9) x 10/(cm 2 .sr.sec.)

averaged over all regions of the sky (Kraushaar et al., 1973). (Value

corrected according to private communication with G. W. Clark, 1973.)

The OSO-III experiment did not measure the energy spectral shape.

(b) The Galactic Plane. SAS-II has confirmed the high intensity

of gamma rays coming from the galactic center region. The region extends

along the galactic plane for 600 to 700 in the vicinity of the galactic

center and is no wider than 90 full width half maximum for 100 MeV

ganma rays and could be narrower, since there is still a final cor-

rection to be applied to the SAS-II attitude data. The general intensity

level is about 1.2 x 10-4/(cm2 rad sec), to which an uncertainty factor

of 1.5 is attached until the SAS-II calibration is complete. Whereas

the average energy spectrum from this region is much harder than the

diffuse radiation, the number of gamma rays between 30 and 60 MeV

relative to the number above 100 MeV is inconsistent with a pure T0 -

decay component. Apparently, there are other components with softer

spectra. Because the SAS-II aspect has not yet been solved with

sufficient accuracy, at present the SAS-II data would allow either a

diffuse radiation or a sum of point sources for the soft component;

however, there would, have to be several (at least about six) point

sources, or there would have been a greater non-uniformity than

observed.
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(c) Discrete sources. High quality attitude data is not yet

available for a detailed study of discrete sources with SAS-II. How-

ever, a positive flux is detected for the Crab nebula on the basis of

an analysis of a sixth of the data available. A complete analysis of

the data combined with accurate attitude data will allow a study of the

energy spectrum of the Crab nebula emission and the possible periodic

pulsations from NP0532.

No evidence is obtained for gamma ray emission from Sco X-l,

with 95 percent confidence limits based on about a fourth of the

data of 1.7 x 10-6/(cm2sec) for gamma rays above 40 MeV and

1.0 x 10-6/(cm2sec) above 100 MeV. A full analysis of a typical one

week exposure will allow 95 percent confidence limits of about

2 - 3 x 10-7/(cm2sec) for sources for which no positive indication is

obtained.

5. Discussion.

(a) Diffuse Radiation. Fig. 7 shows that the isotropic gamma

radiation for I b 11  > 200 exhibits an enhancement relative to the

single extension of the power law spectrum valid in the X-ray region

from 1 to 20 MeV and then a rapid decrease in intensity in the region

from 40 to 200 MeV with an apparently reasonably smooth curve through

the entire gamma ray region. Until more SAS-II data from many regions

of the sky have been analyzed with the full angular resolution, it is

not possible to say that the radiation is truly uniform over the sky,

and uniform also on a fine scale. However, it seems a plausible



13

hypothesis to assume that the regions examined thus far by SAS-II are

representative and consider the possible origin of the radiation.

There is, of course, the possibility that radiation is the sum of

many, many weak sources of unknown origin. However, there are at

least two other possibilities, one that the radiation comes from

diffuse electrons interacting with matter, photons, or magnetic fields

and the other is that the gamma rays are of cosmological origin.

With regard to the diffuse electron possibility, bremsstrahlung

seems unlikely because, at an energy where an increased slope would be

expected, 1 to 10 MeV, due to an increasing rate of energy loss, the

inverse is observed. For both Synchrotron and Compton radiation, a

power law electron energy spectrum leads to a power law photon,

spectrum, but with a different electron spectrum which would have at

least as sharp features. There is no reason to expect such a spectral

shape for diffuse electrons, although there is no experimental know-

ledge of the electron spectrum in the relevant energy range. Further,

especially in the synchrotron case, the intensity seems too high to

be consistent with reasonable estimates of the interstellar parameters.

Of the pure gamma ray cosmological hypothesis, there are two of

which the authors are aware that seem to be possible candidates. They

are the cosmic ray interstellar matter interaction model and the particle-

anti-particle annihilation in the baryon symmetry steady state model.

In both theories, the resulting gamma ray spectrum, which is primarily

due to no decay, is red-shifted substantially over the age of the

expansion of the universe. They are discussed by Stecker,et al.(1971) and

Stecker (1973).
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In an expanding model of the Universe, the density of matter is

much greater in the cosmological past than it is observed to be in

the present. However, since the produced gamma radiation reaches us

from large distances, the energy of the photons is degraded by the

cosmological redshift caused by the expansion of the Universe. One

curve developed by Stecker (1969) involving red-shifts up to about

100 is shown in Fig. 7. The theoretical curve is seen to agree with

experimental data reasonably well.

An alternate attempt to explain the gamma radiation through red-

shifted gamma rays from n° decay arises from the big bang theory of

cosmology with the principal of baryon-symmetry. Harrison (1967) was

one of the first to propose a model of this type. Omnes (1969),

following Gamow (1948) considers a big-bang model which is initially

at a very high temperature and density, and then shows that, if the

universe is baryon-symmetric, a separation of matter from anti-matter

occurred at T> 30 MeV. The initial phase separation of matter and

anti-matter leads ultimately to regions of pure matter and pure anti-

matter containing masses of the size of galaxy clusters. Stecker,

Morgan, and Bredekamp (1971) have predicted the gamma ray spectrum

which would be expected from annihilation at the boundaries of such

clusters from the beginning of their existence. This spectrum is very

similar to the one shown in Fig. 7 in the energy range for which data

exists, and is not included in the figure for that reason.

(b) Galactic Plane Radiation. Since the final attitude data do

not exist for SAS-II at the time of writing of this article, discussion
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of the galactic center region must be limited to a summary of the

broad features observed by SAS-II. (1) the enhancement of the

galactic radiation in the region of the galactic center observed by

OSO-III is confirmed. (2) It is 600 to 70* in length along the plane

and no more than 90 wide. (3) The energy spectrum is not a plre nO

spectrum, but rather it also contains an enhanced flux below 70 MeV

relative to that expected from a 1n spectrum. (4) The enhancement

is not due just to a few point sources, although it could, of course,

be due to a large number of point sources.

(c) Discrete Sources. A discussion of the significance of

discrete sources must await further data analysis, however the sensi-

tivity of SAS-II should allow the study in detail of a number of

discrete sources and limits on objects with no emission almost two

orders of magnitude greater than existing ones.
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Figure Captions

Figure 1. Schematic diagram of the SAS-2 Gamma-ray spark chamber tele-

scope.

Figure 2. Photograph of a single wire grid spark chamber module with

two planes of two hundred parallel wires. The direction of the

wires in one plane is orthogonal to that in the opposite plane.

Each wire is terminated through a ferrite core.

Figure 3. A microfilm plot of an event which presents two orthogonal views

of the digitized trajectory of a pair of electrons produced by a

gamma-ray interacting with one of the tungsten plates between the

32 spark chamber modules. the x's and y's denote cores set due to

the passage of charges particles in the two orthogonal views. The

vertical axis is compressed by nearly a factor of three relative

to the horizontal, causing angles to be overemphasized.

Figure 4. An artists concept of the Small Astronomy Satellite (SAS)-2 in

orbit. The experiment surrounded by a thermal blanket sits atop

the spin stabilized spacecraft. Altitude is controlled by magnetic

torquing.

Figure 5. Regions of the sky in galactic coordinates viewed by SAS-2 through

May 21,1973. The cross hatched regions are those viewed during the

first five weeks after launch. See text for further details.

Figure 6. The diffuse gamma-ray spectrum measured by SAS-2 for regions of

the sky analyzed with lbll1 > 200. See text for a discussion of the

specific region. For the present, a factor of uncertainty of 1.5



should be attached for each point.

Figure 7. Diffuse radiation observed by several experiments. Also shown is

the linear extrapolation of the X-ray data (solid line) and the

spectrum predicted by Stecker, et al.(1971) for gamma-rays produced

by the decay of neutral pions resulting from cosmic ray interactions

with interstellar matter in the cosmological past. See text for dis-

cussion.
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OBSERVATIONS OF HIGH-ENERGY GAMMA RAYS 1

G. G. Fazio

Smithsonian Astrophysical Observatory and Harvard College Observatory

Cambridge, Massachusetts

I. INTRODUCTION

At energies above 1011 eV, the predicted fluxes of cosmic gamma rays

from discrete sources are so small (< 1 m 2 day - ) that it becomes impractical

to measure these fluxes with detectors in high-altitude balloons and satel-

lites. However, this radiation can be observed, indirectly, with ground-

based instruments. When high-energy cosmic gamma rays strike the

Earth's atmosphere, they generate a shower of particles that in turn emit

a burst of Cerenkov light. In principle, a ground-based observer, using

rather simple apparatus, can record the intensity and direction of either

the particles or the Cerenkov light, or both, and hence determine the

energy and arrival direction of the incident gamma-ray photon. In the

energy region between 1011 and 1013 eV, the shower particles are absorbed

1An invited paper presented at the International Symposium and Workshop

on Gamma-Ray Astrophysics, National Aeronautics and Space Administra-

tioi Goddard Space Flight Center, May 1973.
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in the atmosphere, and therefore only the Cerenkov light technique can be

used. It is this energy region in which most experiments are done and

about which I will describe our recent results., Let me begin by first

describing the instrumentation used in these experiments, as it has bearing

on the interpretation of the results.

II. INSTRUMENTATION

In the absence of sufficiently strong sources of cosmic gamma rays,

the design of experiments must be based on theoretical models of the

properties of the Cerenkov light generated by air showers. These studies

have been done by Zatsepin and Chudakov (1962), Zatsepin (1965), Long

(1967), Rieke (1969), and Bosia, Maringelli, and Navorra (1972). In

general, at 1011 eV, these light bursts of 3-nsec duration have angular

diameters of the order of 0 . 5 but, when viewed away from the shower axis,

are elongated and displaced in angle toward the shower maximum. The

number of Cerenkov photons per unit area at ground level is rather constant

within 130 m of the shower core and falls rapidly beyond this radius.

Therefore, a light detector with sufficient sensitivity will be able to detect
4 2

showers over an area of 5 X 104 m2. Thus, the principal advantages of this

technique are the combination of a large sensitive area with good angular

resolution.

There are also disadvantages. The basic one is that there is no

equivalent of the anticoincidence counter to remove those showers generated

by charged cosmic-ray particles; these are at least several hundred times

2



more numerous. Another disadvantage is that the technique can be used

only on clear, moonless nights.

To obtain the maximum possible light-collecting power and hence the

minimum possible threshold energy, the Smithsonian Astrophysical

Observatory (SAO) constructed a light reflector of 10-m aperture, mounted

on an alt-azimuth antenna positioner. The reflector is located at the

2300-m level of Mount Hopkins, Arizona (Fig. 1). Based on theoretical

calculations, the reflector, when used as a gamma-ray detector pointed

to the zenith, has a threshold energy of 9 X 1010 eV, an effective sensitive

42
area of 1.3 X 10 m , and an effective angular resolution of 10. The max-

-1
imum shower count rate at the zenith is about 400 min- . At angles away

from the zenith, the threshold energy and the effective collecting area

increase. There is no energy resolution in the integral counting mode

other than this method of varying the threshold energy. Attempts are

being made to achieve energy resolution by measuring the intensity of

each Cerenkov light burst.

The primary cosmic radiation generates an isotropic background source

of Cerenkov light bursts; hence, a gamma-ray source can be distinguished

by an increase in the number of showers detected in the direction of

the suspected source. Two observational techniques have been used to

detect this anisotropy, the drift-scan mode and the traclking mode. In the

drift-scan mode, the reflector is aligned 20-30 min of right ascension ahead

of the suspected source; the Earth's rotation then sweeps the field of view

of the detectors over the source. Many drift scans must be accumulated on

3J



each object, since the expected anisotropy is less than 1 percent. Although

the drift-scan mode has advantages in terms of stability and ease of opera-

tion, it is most inefficient because less than 20 percent of the observing

time is spent on the source. To increase the on-source observing time,

the tracking mode was developed. In this mode, two phototubes are

located at the focus of the reflector and separated by 4. 2. The reflector

then tracks the source in such a manner that one phototube views the source

while the other phototube views the background shower rate "off" source.

Every 10 min, the fields of view are reversed. In this mode, approximately

90 percent of the time is spent observing the source.

The major limitation to the sensitivity of these experiments is the

isotropic cosmic-ray background owing primarily to proton-initiated air

showers (P-EAS). Several groups have sought to distinguish gamma-ray-

initiated showers (G-EAS) from P-EAS by making use of subtle differences

in the light distributions from the two types of showers (Tornabene and

Cusimano, 1968; O'Mongain et al., 1968).

However, the most successful experiments in distinguishing the origin

of the air shower have been performed by Grindlay (1971a,b). He has

presented evidence that he has been able to distinguish the Cerenkov light

from the electrons at the maximum of the shower's electromagnetic cascade

(height hmax) from the Cerenkov light owing to the unscattered, penetrating

shower "core" of predominantly pions, muons, and secondary electrons.

These latter particles would be present only in P-EAS. The technique

4



uses two searchlight-mirror detectors operated in coincidence mode and

separated by 70 m, with each mirror rotated inward from the source direction

by an angle 0 so that each is pointed at the shower maximum (figs. 2 and 3);

for a gamma-ray energy of 1012 eV, hmax= 6.2 lan and 0 = 0 35. A third

mirror system is used to detect the penetrating shower core (h = 3. 5 km,

0 = 0. 65). Because the light from the lower component is relatively iearby,

it is rich in the ultraviolet component and hence can be distinguished from

light at the shower maximum. A G-EAS is registered only when light from

shower maximum is seen not accompanied by light from the lower level.

With this technique, Grindlay has been able to reach an average rejec-

tion ratio of 70%. For gamma-ray energies -5 X 1011 eV, the combined

effects of P-EAS rejection and increased angular resolution have made

possible an order-of-magnitude increase in sensitivity over mirrors of the

same size used in the normal,modes. The drift-scan mode was used in these

experiments, and the complicated pointing geometry permitted only 5 percent

of the operating time on source. Recent experiments using the 10-m reflec-

tor and a 5-foot searchlight mirror on an alt-azimuth antenna positioner per-

mitted operation in the tracking mode and a considerable increase in operating

time on source.

Grindlay, in cooperation with Prof. R. Hanbury Brown's group at the

University of Sydney, has converted the two 22-foot reflectors of the

stellar interferometer at Narrabri, Australia, for use as atmospheric

Cerenkov light detectors (fig. 4). P-EAS rejection was obtained with a

second phototube located in an off-axis position on one of the reflectors,



and the reflectors were operated in the tracking mode. Several discrete

sources in the Southern Hemisphere were investigated for the first time

in 1972.

m. OBSERVATIONS AND RESULTS

Since 1968, the 10-m reflector has been used to search for cosmic

gamma rays from more than 27 discrete sources, including supernova

remnants, pulsars, X-ray sources, magnetic variables, radio galaxies,

and quasars. With the exception of the Crab Nebula, none of these sources

was detected (Weekes et al., 1972). For gamma-ray energies greater

than 2 X 1011 eV, the upper limits to the flux were of the order of 10- 10

-2 -1
photon cm sec . It takes approximately 10 hours of observation on source

to reach these limits. An extrapolation of the X-ray spectrum of some of

these sources would indicate a gamma-ray flux in excess of this value.

Simple Compton-synchrotron models for producing gamma rays in radio

sources also predict fluxes above this value. Where enough information

is known about these radio sources, the upper limits place important con-

straints on the source parameters, particularly the average magnetic field

in the source.

Although other groups in the past have reported evidence for discrete

gamma-ray sources in this energy range (e. g., Stepanian, Vladimirsky,

and Fomin, 1972), we have investigated these same sources and have

found no evidence of gamma-ray emission.



During 1972, Grindlay's observations with the Narrabri reflectors in

the Southern Hemisphere yielded preliminary evidence for gamma rays from

several sources, but no radiation above 2 X'1011 eV from the discrete

source Sgr A at the galactic center nor from several of the 100-MeV gamma-

ray sources reported by Frye et al. (1971). These results are very

tentative and further observations are currently being performed during

April-June 1973.

The Crab Nebula is a very special case. Observations with the 10-m

reflector over the years 1969-1972 indicate an average flux of gamma rays

of 4.4 ± 1.4 X 10 photon cm 2 sec - 1 with energy above 2. 5 X 101 eV at

the 3. 1 level (Fazio et al., 1972). This flux corresponds to an emission

of 6 X 1033 ergs/sec, which is significantly less than the X-ray emission

of the Nebula. However, the gamma-ray flux may vary with time, and the

most significant flux (1. 21 ± 0. 24 X 10- 1 0 photon cm - 2 sec - 1) may occur

60 - 120 days after a major spin-up of the pulsar NP 0532. This increase

was observed on three different occasions and if only the flux in these

intervals is used, the effect is at the 5 r level. The total gamma-ray

energy observed on each occasion was ~1041 ergs, an energy approximately

equal to the energy of the pulsar spin-up.

The average gamma-ray flux detected can be explained easily by a

Compton-synchrotron model of the Crab Nebula, in which the gamma rays

are produced by Compton scattering of relativistic electrons on their own

synchrotron radiation (Gould, 1965; Rieke and Weekes, 1969; Grindlay and

Hoffman, 1971). The primary unknown variable in this theory is the
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magnetic field in the Nebula; and, hence, a measurement of the gamma-

ray flux is a way of determining the average magnetic field. Figure 5

shows the current data along with the exact Compton-synchrotron model

of Grindlay and Hoffman (1971). The data are best fitted with a value of

(B ) = 2.5 X 10- 4 gauss in the uniform field model of the Nebula and by a

value of B = 10- 3 gauss for a model based on a 1/r field, where B is
B 0  0

the value of the field at the inner edge of the first wisp surrounding the

pulsar.

The variability of the gamma-ray flux is more difficult to explain. In

a Compton-scattering process, the electrons have too long a lifetime.

The synchrotron process requires electrons of the order of 1017 eV in a

field of 10- 3 gauss; these electrons have a lifetime of ~103 sec, and hence

this process seems more feasible. The number of 1017 eV electrons

required is small compared to the total number of electrons injected into the

Nebula. The 60-day delay and the 60-120-day duration may be due either to

a time delay in the electron-acceleration process, e. g., in the wisps, or,

assuming that the particles stream out from the pulsar, to the light-travel

time in the geometry of the region where the synchrotron radiation is produced.

Because of this possible variation in the gamma-ray flux from the

Crab Nebula, it is important that the SAS-B experiment monitor the

100-MeV flux from the Nebula for time variations. If, indeed, the 10-m

reflector has detected a continuous flux of gamma rays at 1011 eV from

the Crab Nebula, it becomes particularly interesting to determine to what

8



extent this flux is pulsed. Grindlay (1971c), using the proton-shower-

rejection technique, first reported a pulsed flux of gamma rays from

NP 0532 based on 42 drift scans in January 1971.

Ninety-nine additional scans were obtained in November-December

1971, which also showed evidence of a pulsed effect (Grindlay, 1972).

Later, it was discovered that the November-December data were analyzed

with the wrong period, owing to a computer-program error. Reanalysis

of this data resulted in even more significant evidence of having detected

a pulsed effect from NP 0532. The sum of all 141 drift scans exhibited

a 4. 2 a effect, but the primary and interpulse both appear to be 1.7 msec

early with respect to the corresponding optical peaks. These data correspond

11 8- 1 2  -2 -1to a pulsed flux above 6X1011 eV of 8 6. 5X10 photon cm sec - 1 .

Grindlay repeated the observations in 1973, by using the tracking

mode to increase the observing time on source. Preliminary analysis of

the data again showed evidence of pulsed gamma rays, but the primary

peak of the radiation may be delayed in phase from the optical pulse by

1.7 msec (Grindlay et al., 1973). This repeated positive effect is most

interesting, and it is still possible that Grindlay, using the proton-shower-

rejection technique, has detected a pulsed gamma-ray flux from NP 0532

but the present results do not give unambiguous proof.

Helmken et al. (1973), by using data on the Crab Nebula obtained with

the 10-m reflector, have analyzed the arrival times of air showers for

over 200 hours of these observations; the arrival times were recorded to a

9



precision of 200 psec. An analysis of the data by use of the optical pulsar

period and phase revealed no statistical excess at the primary pulse of the

interpulse. A typical upper limit to the flux at 1. 8 X 1011 eV for a

1. 3-msec bin width and E- 1. 1 spectrum was 1. 4 X 10- 1 1 eV cm - 2 sec- ev - 1

Upper limits to the flux were also obtained at energies of 3. 0 X 1011 eV

and 4.7 X 1011 eV (fig. 5).

The lower energy X- and gamma-ray data are best fitted by a curve of

the form 1.0 E-1. 1. Extrapolated to the 1011 eV energy region, the curve

lies 2 orders of magnitude above the current upper limits. The extrapolated

flux, if true, would be verified in less than 20 min of observations. Thus,

an important result of this work is that the upper limits to the gamma-ray

flux indicate a major break in the pulsar spectrum between 1 and 100 GeV.

When the previously reported positive, continuous flux is taken with the

present upper limits to the pulsed flux, it places an additional upper limit

of 30 percent on the ratio of the pulsed-to-continuous component at 1011 eV.

This is a reversal of the trend at lower energies.

The University College, Dublin-Harwell group (N. Porter, private

communication, 1972) also have evidence for a periodic flux of 2 X 1012 eV

gamma rays from the pulsar, but, again, the primary pulse is not in

phase with the optical pulse. If real, the effect would correspond to a flux

of 2 X 10 12 photon cm - 2 sec - 1

10



IV. FUTURE EXPERIMENTS

It is particularly important to continue observations on the Crab

Nebula for two reasons: a) To determine if an increase in the continuous

gamma-ray flux is associated with the pulsar spin-up, and b) to determine

if Grindlay's technique of rejection of proton-induced showers has detected

a pulsed flux from NP 0532.

The next priority would go to observation of the sources seen in the

100-MeV-1-GeV region with balloon-borne detectors, e.g., the sources

reported by Frye et al. (1971) and with the SAS-B and TD-1 satellite

detectors.

The sensitivity achieved in the current experiments has been the result

of many hours of observation on a limited number of sources. It is still

possible that there exist sources of detectable intensity that were not

included in our survey or that were not observed in other regions of the

spectrum. Therefore, Weekes et al. (1972) have proposed an all-sky

survey of the Northern Hemisphere. Very few observations have been

made in the Southern Hemisphere.

It is also possible that the gamma-ray sources examined are time

variable, which makes verification even more difficult. Delays between

balloon-borne gamma-ray detector flights are of the order of 6 months.

One advantage of the atmosphqric Cerenkov light technique is that

11



immediate observations can be made on a suspected source. In view of

this, we ask groups that have discovered a possible source of cosmic

gamma rays to communicate the information, to us as soon as possible.

In all the above programs, an increase in detector sensitivity would

be most helpful. In theory, the proton-shower-rejection technique used

by Grindlay should significantly increase the sensitivity. Hence, it

appears that the design of any future detectors should use this technique.

One possibility is the construction of a second large reflector near the

10-m reflector at Mount Hopkins. Another tack one could follow would

be to lower the gamma-ray threshold energy (Et) of the 10-m reflector.

The current reflector mount could support a second 10-m reflector. Since

Et cc A/2, where A is the area of the reflector, doubling the area would

reduce the threshold energy only by a factor of 0. 7, but additional reductions

could be made by increasing the frequency bandwidth and operating in the

coincidence mode.

Continued studies of the structure of the Cerenkov light bursts produced

in air showers are also necessary to maximize the efficiency of present

detectors. For example, N. Porter has suggested that the geomagnetic

field can have important effects on the angular distribution of Cerenkov

light from extensive air showers.
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LIST OF FIGURE CAPTIONS

Fig. 1. The 10-m optical reflector located at the 2300-m level of Mount

Hopkins, Arizona.

Fig. 2. Simplified geometry of the detection technique used by Grindlay

to reject proton-initiated extensive air showers.

Fig. 3. Photograph of the series of 5-foot searchlight mirrors used by

Grindlay at Mount Hopkins, Arizona.

Fig. 4. One of the 22-foot reflectors at Narrabri, Australia.

Fig. 5. Graph of recent results of the pulsed and continuous flux from the

Crab Nebula. The solid lines represent the Compton-synchrotron model

computed by Grindlay and Hoffman (1971) for a uniform magnetic-field

model and for a field proportional to 1/r.
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Abstract

This paper reviews the observations of

gamma-ray emission made from the OSO-7 satellite

in connection with two solar flares in early

August 1972. The details of the measurements

and a preliminary interpretation of some of the

observed features are given.
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Introduction

The primary purpose of this paper is to review the obser-

vations of solar flare-associated gamma rays. Some preliminary

discussion of the features of the measurements will be given

even though the full interpretation of the measurements is not

complete, as far as understanding the physics of solar flares

is concerned. The observations discussed here were first

presented at the NASA Symposium on High Energy Phenomena on the

Sun (Chupp et al., 1972), and a more detailed report has been

published (Chupp, et al., 1973).

The University of New Hampshire gamma-ray detector, which

is situated in the wheel section of the OSO-7 spacecraft, has

been described in detail by Higbie et al., 1973. Briefly, it

consists of a 7.6-cm by 7.6-cm NaI scintillator surrounded by

and in anticoincidence with an active CsI shield. It is cali-

brated by a gated radioactive source (Forrest et al., 1972)

twice each orbit and has an energy resolution of 
= 8 percent

FWHM at 662 keV. Two independent pulse height spectra covering

the energy range 0.3 - 9 MeV are simultaneously accumulated over

an 180-second interval; one in the solar direction, and one in

the antisolar or background direction. An auxiliary 7.9-cm 2 NaI

X-ray detector is also included in the instrument. It covers

the energy range 7.5 - 120 keV in four energy bands, and a com-

plete X-ray spectra is taken every 30 seconds.
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Gamma-Ray Observations

Figure 1 shows the counting rate versus time in several

energy bands covering the range 7.5 keV - 8 MeV observed during

the 3B He flare that began at ~0621 UT on 4 August 1972. Also

shown is the radio burst at 19,000 MHz as reported in UAG-21

(Lincoln and Leighton, 1972). The rates in the energy interval

7.5 - 120 keV are from the X-ray detector, and the rate in the

0.35 - 8 MeV interval is from the central gamma-ray detector.

As can be seen, OSO-7 was eclipsed by the earth before the event

was over, but according to the radio burst, most of the flash

phase was observed. The time correspondence between the radio,

X-ray, and gamma-ray continuum is self-evident. Figure 2 shows

some of the same rates on an expanded time scale. All of the

rates were observed to increase above their preflare values at

0621±1 UT. Although the lower energy channels quickly reached

their instrumental saturation level, the two higher energy

channels did not. These channels indicate that the rates con-

tinually increase over a 200-second interval and then appeared

to level off until the eclipse at 0632 UT. The pulse height

spectra that was observed in the time interval 0623 - 0632 UT is

shown in Figure 3. As can be seen, there is an increase in the

energy continuum that extends above 3 MeV and two pronounced

photopeaks at 0.5 and 2.2 MeV in the solar quadrant. The two

peaks at 1.17 and 1.33 MeV are leakage peaks from the onboard

Co6 0 calibration source. The two peaks at 0.5 and 2.2 MeV have

been interpreted as resulting from positron annihilation at

511 keV and neutron capture in hydrogen at
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2.23 MeV. The time history of the counting rates in the two

photopeaks are shown in Figure 4 where the 60 - 120 keV rate

(X-ray Channel 4) is reproduced for comparison. Although the

photopeak counting statistics in the individual 180-second scans

are not sufficient to determine a detailed time history, it can

be seen that the rates in the photopeaks follow the time history

of the high energy continuum quite closely.

The counting rate observed in association with the 3B Ha

flare that started at -1517 UT on 7 August is shown in Figure 5.

Also shown is the radio flux at 15,400 MHz (Solar Geophysical

Data Report No. 342, February 1973). The OSO-7 spacecraft was

in eclipse during the flash phase of the flare and no continuum

X-rays with energies greater than 120 keV were observed after

the spacecraft came out from eclipse at 1538 UT. However,

evidence for line emission at 0.5 and 2.2 MeV was observed

between 1538 -1547 UT.

The time-averaged fluxes at these two energies observed on

4 and 7 August are given in Table 1. Also given are the fluxes

observed at 4.4 and 6.1 MeV on 4 August. These latter two lines

have been interpreted as arising from C12* and 016*.

Interpretation

The gamma-ray lines observed from the flare on 4 August,

namely, at 0.51, 2.23, 4.43, and 6.13 MeV (from positron annihila-

tion, neutron capture on hydrogen, and excited states of C1 2 and

and 016, respectively) have been predicted to be the most intense



lines based on known cross sections, solar abundances, and

assuming nuclear interaction of the energetic solar particles with

the solar atmosphere (Lingenfelter and Ramaty, 1967). The

ratio of the observed lines are those predicted to result from

a spectrum of energetic solar particles of the form

N(>P) = No exp(-P/Po)

where the characteristic rigidity Po is in the range 60 - 80 Mv.

The spectrum of energetic particles measured on satellite

detectors near 1 AU between 4 and 8 August agree with this

spectral shape (Ramaty and Lingenfelter, 1973). However, there

is at least one reference to a ground level effect from this flare

(Pomerantz and Duggal, 1973). If this is true, then at least a

portion of the energetic solar particles must have had a much

higher characteristic rigidity. The absolute intensity of the

observed gamma-ray line fluxes, however, is much lower

(by a factor of 102 - 103) then was predicted from a

flare of this magnitude. The intensity of the

gamma rays is based mainly on the solar atmospheric density in

the region where the particles interact and the number of

energetic particles accelerated and released. In the past the

only estimate of the total number of particles accelerated and

released was based on measurements near 1 AU and model-dependent

extrapolations back to the sun.

If the observed 200-second risetime of the very hard X-ray

continuum is interpreted to be the time history of the rate of

nuclear reactions producing the positrons and neutrons, then

several other interesting results can be derived. First, unless

the electrons and protons are accelerated and stored very high

in the atmosphere and what we are seeing is the dump of -. ese



particles into the denser lower atmosphere, then the time scale

for converting some form of potential energy into the kinetic

energy of relativistic particles is also 200 seconds. Second,

a study of the risetime of the 2.2-MeV line flux indicates that

the neutrons must have been captured in a region where the

density was z 2 x 1017 protons/cm 2 (Reppin et al., 1973). This

is the photosphere and is expected since the neutrons, being

uncharged, can easily escape from the region where they are

produced to the higher density regions where they can be slowed

down and captured. Last, the observed risetime of the 511-keV

line cannot be more than 200 seconds. This together with the

known cross section for annihilation implies that the density

in the region where the positrons annihilate must be greater

than 2 x 1011 electrons/cm 3 . A study of the line width of the

511-keV line observed on 4 August has lead to an upper limit

temperature in this same region of 2 7 x 1060K (Dunphy et al.,

1973). Because the positron is charged, it is reasonable to

assume that the positrons are trapped in the region where they

are produced and that the above temperature is an upper limit for

this region.

The observations of line emission on 7 August after the

flash phase is over is expected because of the =200-second

annihilation time for the positrons; some of the positrons are

produced from radioactive isotopes with long half lives and the

100-second capture time for neutrons in the photosphere.



Conclusion

The solar flare gamma-ray observations reported here

appear to be in general agreement with models and calculations

proposed by Lingenfelter and Ramaty, 1967. Further study of

these observations together with other observations of the same

flare of other wavelengths and particles should lead to a rather

specific acceleration and interaction model for these flares.

Of particular interest is the reported He 3 measurements

(McDonald et al., 1973). He3 in the intensities reported must

have been produced in the same sort of nuclear reactions that

produced the gamma rays.
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Figure Captions

Figure 1 Counting rates and radio flux versus time for

the flare on 4 August. 1972.

Figure 2 Counting rates on an expanded time scale for

the flare on 4 August.

Figure 3 Pulse height spectra recorded in the time

interval 0623 - 0632 UT on 4 August.

Figure 4 Time history of the photopeak counting rate

on 4 August.

Figure 5 Counting rates and radio flux versus time

for the flare on 7 August 1972.



Table 1

OSO-7 August 1972

Associated Flare Designations and Solar Flux at
and the time of 1 AU Photons cm- 2 sec-1
Observations

0.5 MeV 2.2 MeV 4.4 MeV 6.1 MeV

3B (Ha) 4 Aug 1972

0624 - 0633 UT (7±1.5) x 10-2 (2.2±0.2) x 10-1 (3±1) x 10 - 2 (3±1) x 10-2

(Before Ha Max)

3B (Ha) 7 Aug 1972

1538 - 1547 UT (3.7±0.9) x 10- 2 (4.8±1) x 10-2 <2 x 10-2 <2 x 10-2

(After Ha Max)
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THE ASTROPHYSICS OF THE DIFFUSE BACKGROUND

OF X-RAYS AND GAMMA RAYS

Ramanath Cowsik

Department of Physics, University of Californiak

Berkeley, California 911720

I. INTRODUCTION

Studies in the field of x-ray and gamma ray astronomy have given

rise to new insights into the structure and composition of our galaxy,

the intergalactic space and the universe itself. Since there have been

many comprehensive reviews (Silk 1970, Silk 1973, Felten 1972) on the

subject, we will describe here only our views on the origin of the

diffuse x-ray and gamma ray background and some of the astrophysical

implications of such a radiation background. In the same spirit de-

tailed references to all existing literature is not made and one may

refer to the comprehensive reviews for this purpose.

The range of energies that is of interest here extends from -102ev

to -10 8 ev, over 6 decades, and a variety of processes contribute to the

generation of a diffuse background. In order to make statements about

the distribution of the sources of the radiation background, we appeal

primarily to the angular distributions of the radiations about us.

Considerations based on plausibility of models of origin and on minimizing

the energy requirements in the sources supplement the classification of

the sources either as Galactic or extragalactic. Our views on the origin

of the various components are summarized in Table 1.

*The address starting 1 October 1973 will be tMax Planck Institute,
8046 Garching bei Munchen, Germany.



Table 1. Origin of the Diffuse X-ray and y-Ray Background

Discussed in
Znery Range Process Source Region Section No.

-250 eV - 2 keV Thermal Bremsstrah- Our Galaxy and the III
lung external galaxies

Cormpton scattering Intergalactic
of the 2.70"K snace
photons

-2 keV - 200 keV Thermal Bremsstrah- Intergalactic space IV
lung

-0.2 i-eV-10 MeV Compton scattering. Cosmic ray sources V
of ~10 4 K photons in the Galaxy

> 100 MeV Compton scattering Central regions of VI
of starlight Galaxy (extended

source at the Galactic
Center)

T
0 2y Galactic disc ( line source)

7 0 *2y ? Galactic Halo?
(isotropic background)

Finally, in Section VII it is shown that the measured y-ray fluxes at

-100 M!eV from the galactic disc place a rather stringent upper limit on

the energy density of any background at submillimeter wavelengths.

II. SOL I:TPORTANT MIECHANISMS FOR GENERATION OF X-RAYS AND y-RAYS

1. Thermal Bremsstrahlung

A high temperature plasma emits x-rays mainly through free-free

transitions. Here the electrons which have a thermal energy distribution

emit bremsstrahlung photons in the field of the ions. This process is

weakly dependent on the exact chemical composition of the plasma and the

rate of x-ray emission by an optically thin plasma is given by (Hayakawa

Pff (Ex) - a th cne 1 2 Z nz ff(Z,T,E x  (1)

x 1- exp (-Ex/kT)
x

= 0.81 x 10- 1 2 ne 2 T-1/2 exp Ex/kT1e eff exp (Ex/kT)



For a plasma of solar composition the effective Gaunt factor, geff is

approximately equal to unity. Equation 1 integrates easily to yield

a cooling time

T = 1.96 x 1011T1/2 /ne sec. (2)

In galaxies clouds of hot plasma may be created continuously, for

example by supernova explosions. These will cool continuously emitting

radiation. Then at any time there will be an equilibrium distribution

temperature of these clouds extending up to Tm, the maximum temperature

of generation of these clouds. If all clouds are created at T and theymax

cool mainly through the free-free process, then the integrated emission of

all the clouds can be approximated by

S1 ex (-Ex/kTmax  (3)
=Ei max

iotice that this is steeper than the single temperature case by a factor

1
, indicating that there is less emission at high energies.

E
x '

Besides free-free emission there would be free-bound and bound-

bound transitions which will lead to sharp edges and lines in the emitted

spectrum depending on the elemental abundances in the plasma.

2. Decay of Neutral Pions

Neutral pions would be produced in the interaction of nuclear

cosmic rays with ambient matter, and these pions decay almost instantaneously

to two gamma rays. This subject has been studied extensively by Stecker

(1972) and in Figure 1 we show the spectrum of Y-rays generated through

this process. It has a very flat spectrum in the region of -70 MeV and

has a spectral slope identical to the cosmic ray beam at high energies.

3. Compton Scattering of Thermal Photons

The importance of this process under astrophysical conditions has
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been made clear by the work of Morrison and his co-workers (see for

example Brecher and Morrison 1969). In this process a highly relativistic

electron scatters a low energy thermal photon into the x-ray energy region.

Cowsik and Kobetich (1971,1972) have made a detailed. calculation of this

process; this calculation is briefly outlined below.

Under most astrophysical conditions the spectral distribution of

background low energy photons can be taken to be the Planck function

h 3 c 3 exDp(/kT)-l (4)

The angular distribution of these photons is isotropic, i.e.

dn
- constant (5)dcos0

The exact expression for the differential Compton-scattering cross-section

is quite involved. However, sifmplication occurs because the mean energy

of the x-ray generated by this process is usually much smaller than the

energy of the electron involved in the scattering. Accordingly, the

differential scattering cross-section for the emission of an x-ray photon

of energy Ex in a collision of an electron of energy E with a photon of

energy s integrated over the angular distribution of the incoming and

outgoing photons becomes (Hayakawa 1969)

a x r ( 2 c2)4 x E2 Ex  (mc 2 )2X 8E (6)
ac (E ' ex  = re c2-- 2 - - -(mc2  + - n 4 (6)c4e E C E

On making the substitutions

B = (mc2)2 , D = wre2/h and X = -E (7)
4 E 2 c

this reduces to (Blumenthal and Gould 1970)

DB (1 + x - 2X 2 + 2x nx ) (8)
c  E2

Consider now a delta-function spectrum of electrons, 6(E-Eo),

generating x-rays by Compton scattering against a thermal photon field (eq. 4)

(4)



This x-ray spectrum is shown in Figure 2. In view of the fact that the

universal thermal background of microwave photons is the most relevant

to the discussion of the isotropic component of the x-ray background, the

plot in Figure 2 corresponds to T=2.7
0 K. The spectral shape for any other

temperature is obtained by simple sliding the same curve by a factor

T
T - o along the X-axis on a log-log paper.

The most important feature that is to be noticed in this figure 
is

that the emission by electrons of single energy is over a very 
wide band

in x-ray energies,

width,extending over a factor of 
2 0Aat half-maximum. Because of this

large band-width any kink or peak or other spectral 
feature in the electrons

energy

is smeared out over an extremely broad/iregion of the x-ray spectrum. Apart

from the broad band-width, the mean energy of the x-ray depends 
quadrati-

cally on the electron energy. This relationship further contributes to

the smoothing of the x-ray spectrum relative to the electron spectrum.

The Compton scattering of 2.7
0 K photons in the intergalactic space

by cosmic-ray electrons leaking from galaxies 
could lead to an important

contribution to the x-ray background (Brecher and Morrison 
1969). In view

of this we calculate the spectral shape of the electrons in 
the intergalactic

space using the radio data of Lang and Terzian (1969). 
The expected x-ray

spectrum is shown in Figure 3 marked as L ig. 
The normalization of this

curve is arbitrary.

III. DIFFUSE X-RAYS BELOW A FEW keV.

Since the early observations by Boyer et al (1968), there has been

a substantial progress in our understanding of the diffuse 
flux at -250 eV.

The observations and related theoretical considerations are reviewed compre-

hensively by Silk (1973).

(5)



The comparison of the Compton x-ray flux from the intergalactic

space (Lit in Figure 3) with the observed data indicates that this

process may contribute significantly to the background below a few keV.

However, since the normalization of this curve is somewhat arbitrary

it is reasonable to expect that only a part of the observed flux indeed

arises through this process. In view of the fact that our own galaxy

emits significantly in this band width one may expect that the diffuse

background is generated as a superposition of emission of all the galaxies

in the universe. This suggestion was first made perhaps by Silk (1970)

and has had much experimental confirmation due to the observation of

several extragalactic sources using the Uhuru satellite (Gursky et al

1972, Giacconi et al 1972). We show in Table 2 (taken from Silk 1973)

the contribution of various types of extragalactic objects to the x-ray

background at -2 keV.

Summing up the last column of the table shows that the sources

contribute significantly at -2 keV. What is the spectrum of emission

to be expected? If we try to fit a thermal bremsstrahlung spectrum to

individual sources the maximum temperature that is encountered in these

extragalactic sources is -2 x 10 70K. Following our discussion in

Section I (eq. 2) the cooling time of a plasma at this temperature is

1.96 x 1011 (2 x 107)1/2T 2 n = 1015 sec t 3 x 107 yrs.ne

taking nezl. This cooling time is much smaller than -- so that there wouldH0
be a broad temperature distribution in the temperatures of the plasma

leading to a spectral shape as given by eq. 3. Viz

p(Ex) ~ - exp (-Ex/kT )
Ex2 max

with Tmax= 2 x 1070K. This spectral shape fits excellently the results

(6)



Table 2. Contribution of Identified Extragalactic Sources to the

Isotropic X-Ray Backgrounda

Local space Flux c
Class Source L (2-10 keV)erg  density n 7 0 nL

sec (1=0.03 ipc - 3 ) (keV/cm2 sec ster)

Small LMC 4 x 1038
alaxies SIC 1 x 1038

Adpted 2 x 1038 10 1i 1.9
mean

Normal 1431 3 x 1039
galaxies Our

galaxy

Adopted 4 x 1039 T 3.8
mean

Radio
galaxy Cen A 8 x 1041 10 - 3 1 0.74

Seyfert

galaxy NGC 4151 2 x 1041 0.02 N 3.8

Abell I b c

clusters ' Centaurus 4 x 104

Virgo 1.5 x 1043

Adopted

mean 3 x 1043 2 x 10 - 5 I 0.57

Abell II

clustersb  Coma 5 x 1044

Perseus 1 x 1045

Abell 2256 1 x 1045

Adopted
mean 8 x 10 4 4  5 x 10 - 6 N 3.8

Quasar 3C273 7 x 1045 3 x 10-8 N 0.18

aData are taken from the Uhuru catalogue (Giacconi et al 1972); H 0 is set
equal to 50 km sec- 1 Mpc- I.

bOnly those sources identified with clusters and known to be extended are
included.

CThe Centaurus and Virgo clusters are not in Abel's (1958) catalogue; however
they approximately correspond to Abell's richness class I.

dEstimated x-ray luminosity of our galaxy (Seward et al 1972).
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below a few keV. Therefore, we conclude that free-free emission from

the various extragalactic sources would contribute significantly to

the x-ray background below few keV. However, the spectral shape is too

steep to contribute significantly at higher energies.

IV. THE 2-200 keV REGION AND POSSIBLE THEHMAL BREfI'SSTRAHLUNG OF THE

INTERGALACTIC GAS.

Investigating the possible origin of the x-rays in this energy band

we noticed (Cowsik 1971) that thermal bremsstrahlung of a tenuous plasma

at a temnerature of 3 x 10 8 0 K had the right spectral form to fit the

observations. An emission measure, fne2 dU - 1.3 x 101 7/cm5 was required

to give the observed intensities. Assuming no clu nping (i.e. ne independent

of k) and taking d = 3 1028 cm, one gets ne = 3 x 10
-6 cm- 3 merit

3h- , for H = 50 lua/sec. Ipc. Therefore we suggested the possibility
8G mui o

of a hot intergalactic plasma as a possible source of this background

(Cowsik 1971, Cowsik and Kobetich 1972). The thermal bramsstrahlung fit

to the experimental data after plausible subtractions of other emission

mechanisms below 2 keV (Sec. III) and above 200 keV (Sec. V) is shown in

Figure 4.

That a hot intergalactic medium could be the source in this region has

been independently pointed out by Field (1972). Of course, the idea of a

hot intergalactic medium is not new. It has been discussed in the context

of continuous creation of matter in the form of neutrons in the steady

state cosmology by Gold and Hoyle (1959) and by Gould and Burbidge (1963).

However, Petrosian and Ramaty (1972) have provided arguments based on ex-

cessive production of hard x-rays through the radiative decay of the neutron

that continuous creation of matter as neutrons if forbidden by x-ray
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observations. The x-ray spectral observations in the region Of 2-20 keV

yield merely the temperature and emission measure of the radiating plasma.

Therefore, the question arises as to whether the emission indeed comes from

a hot intergalactic medium or from hot gas in various galaxies.

We believe that there are indeed reasons that indicate that the hot

intergalactic medium is the most plausible explanation of this emission.

The high degree of isotropy as measured by Schwartz (1970) has been

analyzed by Silk (1973) to show that one needs at least 107 sources in

the sky to yield the required degree of isotropy. This means that a

reasonable fraction of the galaxies should contain hot plasma at 3 x 108 0 K.

In order that the spectrum of emission is not transformed by free-free

cooling (see Sec. 1. eq. 2,3)

1.96 x 1011o (3 x 108)1/2 1

ne Ho (8)

> 3 x 10 1 7 sec

which yield n 10- 2 /cm 3 . Even if one takes ne 10 - 2 one finds that aboute e

5% of all visible galactic matter should be at a temperature of -3 x 1080 K

in order to generate an emission measure of -1.3 x 1017 cm- 5. Firstly,

most of the mass of the galaxies is concentrated in stars (temperature

-1040K), with gas contributing to less than 10% of the total mass. The

galaxies would definitely be unable to contain gravitationally such a

large amount of hot plasma.

There is a second argument in favor of a critical mass density existing

in the form of a hot intergalactic plasma. This argument essentially in-

vokes the intergalactic medium as a heat sink for the energy released during

the synthesis of heavy elements in supernovae exploding in the galaxies.

It has been pointed out that in our galaxy with a mass of -1011 solar masses
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one needs -109 supernovae to generate the heavy elements. How much

energy is released in this process? We may estimate that about one

solar mass collapses to a neutron star in each event yielding an energy

of G(R/2 ) Thus the energy generated per unit mass of the

galaxy

u =10 "2g1 ' 1 r; =  2 x 1018 erg/g

using R = 106 cm. This released energy is not seen as electromagnetic

radiation in any frequency band, and this energy must therefore have gone

into the kinetic energy of matter. 5 x 109 ergs/gm corresponds to a

temperature of -10100K. This shows that we need to have approximately

100 times as much intergalactic matter as in the galaxies to absorb this

energy so that the mean temperature of the universe may not be too high.

With a hot intergalactic plasma of critical density (equal to -50 times

the mass density contributed by the galaxies) one has a hot universe at

-3 x 108 oK.

V. 0.3 - 3 MeV GAMMA RAYS.

Stecker, Morgan and Bredekamp (1971) have attempted to explain this

flux of gamma-rays as due to annihilation of matter and antimatter at Z=100

in a baryon symmetric universe. However, neither the absolute intensity

nor the isotropy of this radiation has been established. Therefore, we

wish to investigate here the possibility that this radiation could be of

local, galactic origin. In fact, there are indications in the cosmic-ray

electron spectrum that such emission could be taking place from our

galaxy. Before discussing this galactic source in detail we must emphasize

that the burden of proof lies with experiments. Should they show that the

radiation is indeed isotropic one has to give away the Galactic model,
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which is discussed below.

The cosmic-ray electron spectrum is well measured -T, the region of

-100 MeV to -100 GeV; it is shown in Figure 5 after correcting for solar

modulation effects. The spectrum below a few GeV has a sSrctral index

of -1.6, but steepens to an index of -2.6 above a few GeV. This is not

the true electron spectrum that is injected into the interstellar space

by the cosmic ray sources but is contaminated by interstellar secondaries

generated by the nuclear component of cosmic rays. The positron flux

gives a very good estimate as to the amount of this contamination. After

subtracting the secondaries the spectrum of electrons injected by the

sources is shown in Figure 6. Since the processes of cosmic ray accelera-

tion are electromagnetic in nature, one may safely assume that the spectrum

of electrons accelerated by the sources is a simple power law with an

index of 2.6 similar to that of the nuclear component. The difference in

the energy between the accelerated spectrum and the injection spectrum

must have been radiated away. If part of this radiation is due to Compton

scattering against optical frequency photons then one obtains a gamma ray

luminosity (Cowsik 1971)

-1

L(Ey) 5 1 j- P\ (m 1 3EP -1

(9)

P-1 - -1

a, S, EH, ET and p are constants derived from the electron spectrum and

E=3 x 10- 6 MeV is the assumed mean energy of the optical photon. The

intensity as seen by a detector having isotropic response is shown in

Figure 7. One notices that the spectrum in insensitive to the parameter p.

The general shape of the curve is essentially determined by 8=2.6, the
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spectral index of the cosmic ray electrons at low and high energies

respectively. Despite this elegant fit to the data one has to wait

for measurements of angular distribution in this energy region before

the Galactic nature of the MeV gamma ray fluxes can be established.

VI. GA lA-RAYS IN THE 100 MeV RAPGE

The pioneering work of Clark, Garmire and Kraushaar (1969) established

the existence of a line source coincident with the galactic disc with an

enhancement around the galactic center, and a possible isotropic component.

The measured intensity in the direction of the center is -10-4Y/cm
2

sec rad, the line source elsewhere is about a third of this -2-3 x 10-
5y/cm 2

sec rad. The line source has been explained by Stecker (1969) as due to

production and subsequent decay of neutral pions by cosmic rays. If the

same mechanism should yield the enhancement of the intensities near the

center one needs a substantially large enhancement of gas density near the

central regions of the galaxy. There is no evidence, direct or indirect

for such an enhancement. On the other hand, there is evidence that the

density of stars increases considerably towards the galactic center. The

density distribution of stars as a function of Galacto-centric distance

w, is shown in Figure 8. (Perek 1962). The increase in mass distribution

of stars towards the center is ~1- , and so would be that of the distri-

bution of starlight. With such enhanced starlight density, the Compton

scattering of the cosmic ray electrons of these photons would provide

an intense gamma ray source. Preliminary calculations of the angular

distribution expected through this process is shown in Figure 9 (Cowsik

and Hutcheon 1971). The actual calculations yielded only 70% of the

intensity towards the galactic center as due to this process. If one
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adds the line source due to r0-2Y decay contributing -30' with a flat

dependence on galactic longitude (Stecker 1969) then the emission from

the galactic disc can be explained completely.

What is the spectrum of Y-rays generated through the Compton

scattering of starlight? The cosmic ray electron spectrum has a spectral

slope of 1 =1.C below -3 GeV and a slope of R822.6 above -3 GeV. The

maximum and the mean energies of the scattered photons in the Compton

process are given by

Eax = Ee)2  (10)
ymax m

2

and <E > 4 3 e

The spectral slope of Compton garma-rays will be al = (r1-1)1/2 = 0.3 at

low energies and a2 = (F2-1)/2 = 0.8 at high energies. The typical Y-ray

energy at which the transition takes place can be calculated by using

eq. 10, with Ee m 3 GeV, and the mean energy of the starlight photone

-3 ev (corresponding to a temperature of 1040K).

E . h6 3x109
Y-transition 4 3 - x 3 ev

3 5 x 10

150 MeV

This means that below -150 MeV the spectral slope would be -0.3 and as

such would be very difficult to distinguish from a wo source. We now

wish to emphasize the inevitability of the existence of a Compton source

of Y-rays in the central regions of our galaxy. There is evidence both

for the existence of high density of starlight near the galactic center

(as discussed before) and for the relativistic electrons through their

synchrotron emission; thus the Compton scattering must occur leading to

significant Y-ray flux from the region of the galactic center. Detailed
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spectral shapes and sky maps due to this process will be presented at

the Cosmic Ray Conference at Denver (Sullivan and Cowsik 1973).

The isotropic component at -100 ?MeV has an intensity of -10-5y/cm 2

sec ster. At this moment it is hard to pinpoint a precise source for

this radiation. We wish to add t!it the existence of an extended halo

to our galaxy may contribute significantly to this flux and also that

a truly extragalactic component in this energy region cannot be excluded.

VII. THE 100 1MeV GAMnA-RAY FLUX AiD A LIMIT ON THE ENERGY DENSITY IN

THE SUBI-ILLI TLE BACKGROUND

As pointed out in the last section, the line source of y-rays

away from the galactic center can be completely explained as due to the

decay of r 0o's produced by nuclear cosmic rays (Stecker 1969). This

means that any other source of y-rays must be very weak indeed. One

such could be provided by the existence of intense submillimeter radiation

which would then be scattered to y-ray energies by cosmic ray electrons.

Thus, one may use the gamma ray fluxes to put stringent limits on the

microwave background. This is done in Table 3 taken from Cowsik (1972).

From this table it is clear that the energy density in any radiation

background over and above the universal thermal background at 2.70 K

should be less than 0.6 ev/cm 3 . In Figure 10 this limit is shown in

comparison with observations at microwavelengths.
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Table 3. Gamnra-ray Fluxes at Ey>100 MeV: Theory and Experiment*

Region of sky scanned
Source 600<1<300, b = 00

(disc) b = /2 (halo)
Flux (cm2s rad)-1 Flux (cm2s sr)- I

Experiment (3.4 ± 0.6) x 10- 5  (3 ± 0.4) x 10_-
p+H+Ho-2y >2.6 x 10- 5  3.7 x 10-6
e+E(2.7o)+*e+y >1.1 x 10-5 1.1 x 10- 5

Residual <0.9 x 10- 5  2.3 x 10- 5

e+E(sub-mm)-e+y 4.5 nph x 10-8  4.4 nh x 10-

Maximum number den-
sity of sub-mm quanta = n <200 cm- 3  n <500 cm 3

Corresponding energy ph ph
density = p(sub-mm) = ~ph p<0.6 eV/cm 3

<0.25 eV

*The radio disc is assumed to extend up to -1 kpc above

the galactic plane in making the theoretical estimates.

Because of the Gaussian response of the detector with angles,

the expected counting rates increase slower than linearly with

the assumed thickness of the disc. Note that the estimates

from the "halo" direction are uncertain and are to be given

much lower weight.

VIII. SUM4AfRY

Thus it appears that one has a reasonable explanation for a good

part of the diffuse x-ray and y-ray background that is observed over 6

decades in energy. Thermal sources seem to dominate up to an energy of

-200 keV. Angular distribution measurements are essential in choosing

between galactic and universal models for the intensities in the MeV

region. The source of 100 MeV gamma rays from the disc and galactic

center seem to be well understood as due to the decay of neutral pions and

compton scattering of starlight respectively. These observations put a
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stringent limit on the energy density in any possible radiation back-

ground at submillimeter wave lengths.

I cannot close this review more effectively than by making a call

for all experimentalists in the fielK to measure the angular distribution

of photons in the MeV range which is of very great astrophysical and

cosmological importance, for it relates either to the cosmic ray sources

in our Galaxy or to annihilation of antimatter in baryon symmetric

cosmologies.
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Figure Captions

Figure 1. The integral spectrum of gamma rays generated by cosmic ray

interactions with interstellar matter. Nuclei heavier than

helium do not contribute significantly (Stecker 1970).

Figure 2. The x-ray flux emitted in collisions of electrons of energy

E with the 2.70K photon field is plotted as a function of

x-ray energy. Notice that the full width at half maximum

is a factor of -20 wide; also the mean x-ray energies

related quadratically with the electron energy. These

effects tend to yield an x-ray spectrum which is very much

smoother than the electron spectrum. This fact was used to

show that Compton scattering of the 2.70K photons is not a

significant source at -30 KeV (Cowsik and Kobetich 1972).

Figure 3. The x-ray energy flux is plotted as a function of x-ray

energy and compared with experimental data. Curve 1 is our

calculation of the inverse Compton-scattering; curve 2 is

calculated using the galactic y-ray model of Cowsik (1971);

and curve 3 is the sum of the two contributions. The experi-

mental data for x-ray energies E <0.17 MeV and E ~10 MeV werex x

taken from the review paper by Silk (1970) and for 0.17 MeV

<E <10 MeV were taken from Damle et al (1971) and Golenetskiix

et al (1971). The enhanced emission at 2 keV<Ex<200 keV is

attributed to a hot (3 x 1080K) intergalactic gas.

Figure 4. The difference between the observed energy flux and the calcula-

ted flux (see Figure 3) in the energy interval 2 keV<E <200 keV
x

is plotted as a function of x-ray energy. The line represents



the thermal bremsstrahlung emission for a hydrogen plasma

at 3.3 x 1080K. The line of sight integral fN N dl for this

emission is 1.3 x 10 1 7 /cm 5 . If one assumes no clumping and

fdl = 1028 cms, one gets " = 1 = 3 x 10-6 /cm 3 . Such a
e p

density is adequate to close the universe if Ho = 55 Jm/sec

rlpc.

Figure 5. Electronic component of cosmic rays in the interstellar space.

The secondary electron flux generated by the nuclear component

is normalized using positrons.

Figure 6. The injection spectrum of primary cosmic ray negatrons. Hatched

area indicates uncertainties in the estimate. The predictions

of the model are for p = 2 (.-.-.-.) and p = 3 (- );

Ec = 0.5, 0.7, 1.0 GeV starting from top. Since it is the

difference between the accelerated powerlaw spectrum ~E-2 *6

and the injection spectrum that governs the y-ray intensities

the uncertainty in the y-ray fluxes are within a factor of -2.

Figure 7. A well defined background y-ray flux (absolute normalization within X.

is predicted by model. For Ey <<1 MeV, there is a large flux of

intergalactic origin. The model predicts correctly the primary

gamma ray slope and intensity that would generate the experi-

mental response shown (Anand et al 1969; data from Silk 1970).

Figure 8. The mass distribution in the galaxy in units of Me/pc 3 is

shown as a function of cylindrical coordinates centered at the

Galactic center (taken from Perek 1972).

Figure 9. The gamma ray intensities that are calculated using starlight

distribution implied by Figure 8 are compared with results

of Clark et al (1972). The preliminary theoretical estimates



are multiplied by -1.4 and then averaged over the aperture

of the detector. It is seen that the Compton scattering of

starlight contributes negligibly beyond ~600 galactic longitude.

Beyond this point the Ho0 2y process discussed by Stecker (1969)

dominates and should be added to the Compton fluxes to make

a detailed fit to

Figure 10. Measured background radiation fluxes are compared with that

expected from a black body at 2.70 K. The y-ray fluxes

measured by Clark et al (1972) put a stringent limit on the

intensities allowable at submillimeter wave lengths. In

plotting our upper limit of -0.6 eV/cm
3 we have assumed

that the background radiation has a band width equal to

that of the detector of the Cornell instrument.
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MECHANISMS FOR PRODUCTION OF THE DIFFUSE

y-RAY CONTINUUM RADIATION

F.W. Stecker
Theoretical Studies Branch
Laboratory for Space Physics

NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

The basic mechanisms expected to be important in the

production of cosmic y-radiation were suggested by Morrison

in a classic paper in Nuovo Cimento in 1958. They are

Compton interactions with low-energy photons, bremsstrahlung

interactions, cosmic-ray induced 70 production, and matter-

antimatter annihilation. Of these four mechanisms, the first

two involve cosmic-ray electrons and are electromagnetic

processes whereas the last two involve nucleons, mainly

protons, and are strong interactions processes. Above 511

keV, the y-radiation from matter-antimatter annihilation

arises mainly from the decay of 0o-mesons produced in the

annihilation process so that the kinematics involved in the

last two processes is similar. Since this paper will be

concerned mainly with diffuse continuum radiation rather

than line radiation or radiation from point sources, the

discussion here will be restricted mainly to the above four

processes. (For a treatment of the theory of the produc-

tion of cosmic line radiation, see the paper of Clayton;
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these proceedings.)

The most astrophysically significant role which Compton

interactions are expected to play in cosmic y-ray production

involves the interactions of relativistic cosmic-ray elec-

trons with low-energy photons of the universal 2.7 microwave

blackbody radiation field. The microwave photons have an

average energy near 10-3 eV and a number density of -400 per

3
cm considered to be uniformly distributed throughout the

universe. Compton interactions with cosmic-ray electrons

can then produce y-rays with typical energies of

S= 10 y eV (1

where y = (Ee/mec 2 ) is the Lorentz factor of the cosmic-ray

electron. Thus a 50 GeV electron with a Lorentz factor of

-105 will typically produce y-rays of energy ~ 10 MeV through

Compton interactions with 2.7K photons. We can define the

"spectrum" of y-rays from a single Compton interaction as

the normalized probability distribution of y-rays of energy

E expected to be produced by an electron of energy Ee -

Such a spectrum turns out to be flat and rather broad around

the average energy (Ey) (Heitler 1954, Jones 1965). Because

Ey> c'y2 , the spectrum of y-rays produced by a power-law

cosmic-ray electron spectrum of the form K E- e will alsoe e

have a power-law form KyE y but with r =(1 +1)/2. In fact,

for interactions with a blackbody spectrum of low-energy
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photons at temperature T, the Compton-generated y-ray spec-

trum is given by

I(Ey )6.22x10 21L[10 - 2.962 f(re)]KeT ( e+-(P)/2  e (2)

with the factor f(Fe ) ~ 1 given by Ginzburg and Syrovatskii

(1964). If for example, F ~ 2.6, then r ~ 1.8 for galac-e y

tic cosmic-ray electrons. Because the 2.7K blackbody radia-

tion is believed to be universal, Compton interactions have

been invoked to explain the cosmic X-ray background spec-

trum where the observed F ~ 2 and to set limits on the

metagalactic cosmic-ray electron intensity wMg,e to show

that it must be much less than the galactic value, i.e.,

wMg,e<< WG,e (Felten 1965, Gould 1965, Fazio, Stecker and

Wright 1966, Felten and Morrison 1966; see also the papers

of Cowsik and Ginzburg; these proceedings).

Bremsstrahlung interactions are expected to take place

between cosmic-ray electrons and interstellar and inter-

galactic gas and may be significant in producing low-energy

y-rays and X-rays both in the galaxy and in intergalactic

space (see paper of Cowsik; these proceedings). The proba-

bility distribution spectrum for y-rays from bremsstrahlung

of a cosmic-ray electron of energy Ee is quite flat and may

be approximated by

f(Ey/E,-1
E 1for OE 1E

f(E E ) othe e (3)

O otherwise
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so that the y-ray production spectrum is given by

SL
-1 i LIe(>Ey)

Ib(Ey) = X- odr<p( -r ) E )

where p is the matter-density of the gas in g/cm 3 and X is

the average radiation length for interstellar matter and is

65 g/cm 2 . We may also write equation (4) in terms of the

atomic density n and the path along the line-of-sight L so

that

-26 1e (>Ey)Ib(E y) = 3.4 x 10 nL (5)bE

Y
It follows from equation (5) that for bremsstrahlung

from cosmic-ray electrons following a power-law spectrum

Kee E  e, Fy = Fe (for relativistic electrons) so that, in

general, the y-ray spectrum from bremsstrahlung is steeper

than that from Compton interactions.

We next discuss the y-radiation from the decay of 0-o

mesons produced by cosmic-ray interactions between high-

energy nucleons and gas nuclei in interstellar and inter-

galactic space. Because it now appears that nO-decay y-rays

from cosmic-ray interactions may account for almost all of

the y-radiation above 100 MeV observed in our galaxy

(Fichtel, et al. 1972, Clark, et al. 1968, Stecker 1969a,

Stecher and Stecker 1970, Cavallo and Gould 1971, see also the

paper of Ginzburg; these proceedings), because it has long

been recognized as an important process for cosmic y-ray
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production (see e.g.,Morrison 1958, Pollack and Fazio 1963,

Ginzburg and Syrovatskii 1964), and because it has the most

difficult spectrum to calculate theoretically (Hayakawa, et

al. 1964, Dilworth, et al. 1968, Stecker 1970, Cavallo and

Gould 1971, Levy and Goldsmith 1972) and various theoretical

calculations are somewhat contradictory, this process has

received the most attention. I do not intend to break the

tradition here, in fact, I hope to help resolve here some

of the contradictions that have arisen between the theoreti-

cal calculations.

Figure 1 shows the type of y-ray spectra obtained from

the decay of rO-mesons with various simple energy spectra

f(E ). Typically the spectrum is flat near m c /2 ~ 70 MeV

and symmetric about this value on a logarithmic energy plot.

These characteristics can be easily shown from the kinematics

of no-decay (see, for example the thorough discussion by

the author (Stecker 1971a))and we will not repeat them here.

Figure 2 shows how a typical r0-decay y-ray spectrum may be

built up from an arbitrary pion-energy spectrum and that the

spectrum always has a maximum at -70 MeV. Figure 3 shows

the differential y-ray spectrum obtained by Stecker (1970),

illustrating the various expected characteristics. Figure

4 shows a comparison of the integral spectra obtained by

Stecker (1970) and Cavallo and Gould (1971) normalized to

compare the shapes obtained. The wiggles in the spectrum
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represent artifacts of the assumed pion-production models

and should not be taken too seriously. The shapes of the

two spectra are in good agreement and probably represent

an accurate approximation to reality within the uncertainty

indicated by the wiggles.

The largest discrepency between the various calcula-

tions is in the total y-ray production rates calculated by

various workers and compared in Table 1.

Pollack and Fazio (1963) and Dilworth, et al. (1968)

obtained a total y-ray production rate per hydrogen atom

which would be equivalent to roughly 1.1 x 10-25s -1 and
-25 -i

1.0 x 10 25s respectively for energies above 100 MeV.

This corresponds to the quantity

Sy, 0 (>100MeV) =4 I (>100MeV)/nL> (6)

Pollack and Fazio used the observed cosmic-ray spectrum at

the earth for their calculations. Stecker (1970) used a

demodulated cosmic-ray spectrum to estimate the galactic

cosmic-ray spectrum and, for this reason, obtained a

slightly higher value of 1.3 x 10-25 s 1 for Q (see following

discussion). Kraushaar, et al. (1972) from the OSO-3

satellite observations, obtained an upper limit for Q of

1.6 x 1025 s- and recently the author (Stecker 1973) ob-

tained a theoretical upper limit of - 1.5 x 10-25s - 1

assuming a maximum solar demodulation effect to obtain a
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maximum galactic cosmic-ray spectrum as deduced by Comstock,

et al. Thus, all of the above values for Q o are basically

consistent. The value obtained by Cavallo and Gould (1971)

appears to be somewhat high compared with the others, but a

-25 -1value of ~ 1.3 x 10 s falls within their 30% error

bracket. It is the author's opinion, as will be presently

-25 -1discussed, that a value of 1.3 x 10 s is close to a

"best value" for Q o. The value of Levy and Goldsmith

(1972) is a factor of - 2.5 higher and requires some discus-

sion.

Figure 5 shows an up-to-date summary of the accelerator

data on total cross section (a) times multiplicity (i) for

neutral pion production in p-p interactions for energies up

to 1500 GeV shown as a function of kinetic energy (T)

(Stecker 1973). These data are well approximated by the

broken power-law

1 0-2s T 64cm 0.4<T<0.7GeV

ao0 (T)) (T) - (7)
-27 0.53 2 T>0.7GeV

as the reader can verify from the figure. Taking the cosmic-

ray spectrum I(T) = 0.15 T 2 2cm 2 s -Sr- GeV-1 used by Levy

and Goldsmith (1972), the total y-ray production rate from

p-p interactions is given by
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qyH = 8 If dT I(T)a o(T) o(T)

0.7 T5. 4 4 dT-26 m -1.67dT (8)
= 3.77 x 10 S  T

0.4 0.7

-25 -1
=0.66 x 10 s

Adding in the contribution from p-a, a-p and a-a

interactions in the galaxy brings the total production rate

-25 -1
per hydrogen atom up to 0 10 s There is, of course,

some uncertainty in the assumption of the true "demodulated"

galactic cosmic-ray spectrum as distinguished from that

observed at the earth. However, using the upper-limit to

the demodulated cosmic-ray spectrum given by Comstock, et

al. (1972), an upper-limit on the y-ray production rate is

-25 -1
obtained of (1.51+0.23)xl0 s with the error bracket

reflecting the experimental error in the accelerator data

on U1. The above value is consistent with the value of

1.6x10-25s-1 given by Kraushaar, et al. (1972), which also

represents an upper limit since it does not take account of

the additional contribution from cool H and H2 which may be

adding to the observed flux.

Why then is there such a large discrepancy between the

results presented here and those obtained by Levy and Gold-

smith? The answer appears to lie in the difference between

assumptions on the total cross section for 0o - production

as a function of energy and the multiplicity 5 assumed.
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While we have chosen to rely on measurements from accelera-

tor experiments, Levy and Goldsmith adopt a theoretical

multiplicity law based on the Feynman scaling hypothesis

which may hold above 100 GeV. The logarithmic multilicity

law adopted by Levy and Goldsmith has some empirical support

in cosmic-ray measurements above 70 GeV cited by Levy and

Goldsmith but is contradicted in other cosmic-ray measure-

ments so that the situation at high energies is not as yet

clear (see review by Sreekantan 1972). The logarithmic

multiplicity law based on the scaling prediction is based

on arguments which hold asymptotically in the high-energy

limit and which do not appear to be valid below 50 GeV

although they may begin to be valid within the 50-300 GeV

energy range as evidenced by data obtained at the accelerator

facilities at Serpukhov and Batavia (Slattery 1972).

Figure 6 shows a solid-line fit to the data given in

Figure 5 in comparison with the dashed line which shows the

product aoC or based on the assumptions of Levy and Goldsmith

for proton kinetic energies greater than 1 GeV. The Levy-

Goldsmith assumptions show a reasonable fit to the data

above 100 GeV where the scaling prediction may hold. How-

ever, below 100 GeV the dashed curve is, in all cases,

above the data points. Figure 7 shows the o0-production

function for pp interactions given by the product a 0o oIp

based on the data given in Figure 5. This figure shows
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clearly that almost all of the o-mesons produced in cosmic-

ray pp interactions involve cosmic-ray energies between 1 and

10 GeV. Figure 8, shows the integral y-ray production func-

tion which is proportional to the integral of the curve shown

in Figure 3 and is defined such that Q (<-) corresponds

to the total y-ray production rate per hydrogen atom per second

from pp-interactions alone (the number qyH ) given in the pre-

vious approximate calculation. It can be seen from Figure

8 that only 10% of the y-ray production occurs in interactions

involving protons below 1 GeV and perhaps another 10% occurs

in interactions above 30 GeV. This means that (1) since cosmic-

ray modulation effects are only important below 1 GeV, the

uncertainty in the true cosmic-ray spectrum due to modulation

effects produces only a small uncertainty in the total cal-

culated y-ray production rate, and (2) the uncertainty in the

exact form of the pion-multiplicity law c (T) above 30 GeV

produces little uncertainty in the total y-ray production

rate. Indeed, 90% of the y-rays are produced in interactions

below 30 GeV where the form of the multiplicity law used by

Levy and Goldsmith does not hold. Figure 8 also shows that

the median proton energy for To-production is - 3 GeV. If

we compare the values of oa o used by Levy and Goldsmith

with those used here (as shown in Figure 6) at the median

To-production energy of 3.3 GeV, we obtain a ratio of 2.5

which just corresponds to the ratio between the values for
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the total y-ray production rate given by Levy and Goldsmith

(1972) and the author (Stecker 1970). Thus, the discrepency

between the two values is accounted for. The conclusion is

that the Levy-Goldmsith value appears to be too high because

it is based on an asymptotic multiplicity law which does not

hold in the energy range where at least 90% of the y-rays

are produced.

Mesons and hyperons are also produced in strong inelastic

nucleon-nucleon interactions at somewhat higher energies and

their important decay modes leading to y-ray production are

summarized in Table 2. In addition, nucleon resonances can

be formed which lead to decay chains involving ro-mesons in

particular. These processes have been discussed in detail

by the author (Stecker 1971a), with particular regard to the

y-ray spectra produced. In particular, it is found from

accelerator measurements that hyperons and baryon resonances

formed in p-p interactions, tend to carry off a roughly con-

stant fraction (-60%) of the energy of the incident proton

and from this it can be shown that the resulting y-ray

spectra from the decay of these "excited baryon 
states"

maintains the same power-law form as the incident cosmic-

-r
rays at high energies, i.e., if Icr = KcrE cr, than

I E* EE cr. In particular, if 70-mesons are produced
y,N,Y y y

by a process leading to a multiplicity law mEacr and given

an average energyEr where -a, the resulting -ra
an average energymEcr where b = 1-a, the resulting y-ray
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spectrum has the form (at high energies)

-r
I (E ) = KE Y  (9)Y 0 Y

where

S= +b)-(a+l)r = ( cr

b (10)
and

S2nLK a. X[Fr -(a+l)]/b
Ko = poo (11)

(F +b)-(a+l)
cr

For the decay of E -hyperons, the spectrum is given by
-FI=(E ) = K oEr cr

(12)

with
K 2 -M 2 (Fcr -1)

K o _ cr nLEooXzoM Z / (13)
2cr MEcr

and for nucleon resonances (isobars)

-rIi(E )= Ki E cr (14)
with

K 2K R.nL (2Xi) (cr-1) i E - c r
i= cri i Y (15)

cr

where i typically 10-1-10-2

(Stecker 1971a). The relevant data for hyperons and isobars

are given in Tables 3-5. Table 6 shows the relevant data

for the "fireball" models of pion production (Stecker 1971)

and the resultant differential y-ray spectra at high energies

are shown in Figures 9 and 10. The "scaling" hypothesis
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predicts a logarithmic increase in pion multiplicity with

energy but the resultant form of the y-ray spectrum at high

energies should be close to the result given in Figure 10.

Gamma-rays produced from the decay of no-mesons pro-

duced in nucleon-antinucleon annihilations have spectral

characteristics typical of pion-decay y-rays, i.e., a max-

imum at m c /2 - 70 MeV and a nearly flat spectrum in the

vicinity of the maximum which is symmetric on a log Ey plot

2
about the point m c /2. However, if the annihilations are

assumed to occur near rest in the laboratory system (i.e.,

in the universe) the spectrum is bounded between a maximum

y-ray energy of - 919 MeV and a minimum energy of about 5

MeV. This is because the maximum energy given to a 7o-meson

occurs in the three particle annihilation

p + p Trr +w +ro (16)

and is 923 MeV (two-particle annihilations involving fo-mesons

being forbidden by selection rules involving conservation of

G-parity, see discussion in Stecker (1971a).

Frye and Smith (1966) using accelerator data, and inde-

pendently Stecker (1967, 1971a) using a theoretical pion-

production model in p-p annihilation have calculated the

resultant y-ray spectrum from p-p annihilation at rest. There

is excellent agreement between the two calculations and the

resultant spectrum, on a logarithmic energy plot, is shown

in Figure 11.
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We now turn to a discussion of the isotropic y-ray

background spectrum which is expected to be of cosmological

origin.* Figure 12 shows schematically the results of recent

observations of this background spectrum by Trombka, et al.

(1973), Mayer-Hasselwander, et al. (1972), Share, et al.

(1972) and Kraushaar, et al. (1972) (see the papers of

Trombka, Share and Kniffen; these proceedings).

Because of the cosmological aspects relating to studies

a the diffuse isotropic y-ray background, it is necessary to

discuss the physics of y-ray production in past epochs (such

radiation may be reaching us today from distances of the

order of ~ 15 billion light years. According to big-bang

cosmology, the universe was in a smaller, denser state in

the distant past and has been continually expanding. This

general expansion has caused all electromagnetic radiation

to be Doppler shifted to the red (i.e., to longer wavelengths

which implies lower energies). The red-shift is usually de-

signated by z H A/A,

This implies that a spectrum of y-rays for example from

Io-decay (either from annihilation or cosmic-ray interactions)

which has a maximum at ~ 70 MeV locally, would have that

maximum shifted to a lower energy if such radiation were

produced at an epoch corresponding to a significant red-shift.

To find the total spectrum expected to be observed, we must



Footnote to top of page 14:_-

Results from the OSO-3 detector in the 10 to 100 keV

energy range have shown that the background radiation in

this range is isotropic to better than 5 per cent over an-

gular scales of 100 (Schwartz,D. 1970, Astrophys.J. 162,

439). In the energy range between 0.2 and 4 MeV, Damle, et

al. 1972 (Nature 235, 319) have found evidence for the

isotropy of the diffuse background flux. Above 50 MeV, the

results from SAS-2 and OSO-3 (See papers of Share and

Kniffen,et al. in these proceedings) indicate that there is

a relatively hard component of y-radiation of galactic

origin and a true diffuse extragalactic background compon-

-3
ent observed at high galactic latitudes which is soft (%E )

and which connects smoothly with the Apollo data below 30

MeV (see figures 12,16 and 17). The evidence would thus

seem compelling that the spectrum represented in figure 12

is of extragalactic origin and is therefore not consistent

with the galactic-origin hypothesis suggested by Cowsik

elsewhere in these proceedings.
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integrate over all red-shifts where y-rays were being pro-

duced and weigh the integration with various factors of the

quantity (1+z), (for a complete discussion, see Stecker,1971a,

Chapters 9-14). Also, for z> 100, Compton interactions be-

tween y-rays and intergalactic gas may result in energy loss

for the y-rays so that, in general, an integrodifferential

transport equation involving Ey and z must be solved in

order to obtain the expected total y-ray spectrum resulting

from high-red-shift processes such as matter-antimatter

annihilation (Stecker, et al. 1971). Absorption processes

such as pair-production mechanisms involving intergalactic

gas and 2.7K blackbody photons eliminate y-rays from large

red-shifts from various parts of the observed spectrum.

Gamma-rays arising from any pion-decay process at cosmologi-

cal distances contribute significantly to the isotropic

background only above 1 MeV, because y-rays at lower energies

have been red-shifted by a factor of 70. Such a red-shift

corresponds to an epoch when the universe was opaque to y-

rays and absorption effects were important. The basic equa-

tion to be solved, which we have called the CPT (cosmologi-

cal photon transport) equation is of the form

E -E H(z) e(E) ( (17)
+ - E H(z) =ANN(E,) - dE' KSC (EIE'),,(E')

E
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where E is the photon energy, KAB and KSC are the photon

absorption and scattering rates (which are a function of z

because the intergalactic gas density is assumed to scale

as (l+z)3 because of the expansion of the universe. The

script quantities for the y-ray intensity and production

rate

-3A(E, z) E (l+z) 3I(E,z)

and (18)
n(E,z) (l+z) Q 3QANN(E,z)

are quantities co-moving with the expansion, defined so that

their red-shift-density dependence cancels out. £(E) is an

upper limit on the scattering integral defined by the Compton

process and H(z) is the Hubble parameter which, in terms of

the Hubble constant HO , is given by the relation

H(z) = HO(l+z)[ 1 + Qz]1 / 2  (19)

where Q is the ratio of the mean gas density in the universe

to the density needed to close the universe gravitationally.

The term

= -(l+z)H(z) (20)t az

and the second term in equation (17) expresses the energy

loss of the y-rays because of the expansion-red-shift.

Between ~ 5 and ~ 50 MeV, equation (17) reduces to a

rr
power-law form I(E) E rANN (see Figures 13 and 14) with

the value for rANN estimated by Stecker and Puget (1972)

to be - 2.5 <FANN < 3.5.
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In the vicinity of ~ 1 MeV and below, absorption effects

due to Compton scattering become important and cause the

spectrum to bend over as shown in Figures 13 and 14. Figure

15 shows the critical red-shift for absorption of y-radiation

as a function of observed energy. At lower energies absorp-

tion is due to Compton interactions with intergalactic matter;

in the intermediate range absorption is due to pair-production

interactions with intergalactic matter (Arons and McCray 1969,

Rees 1969). At the higher energies absorption is due to pair-

production interactions with blackbody photons (Fazio and

Stecker 1970). There is a natural "window" between l MeV

and %10 GeV which is optimal for studying cosmological

gamma-rays. Absorption effects come in below 1 MeV and above

10 GeV.

Figure 16 shows a two component model normalized for a

best-fit to the observations involving the production of

intergalactic gamma-rays from cosmic-ray interactions with

intergalactic gas producing 0o-mesons out to a maximum red-

shift of 100 (Stecker 1969b,c, 1971b). Three problems arise

with this explanation: 1) even with a relatively steep

assumed cosmic-ray spectrum (E - 2 .7 ) the bulge in the

theoretical spectrum may be too large to fit the observa-

tions, although this discrepancy may not be too serious

considering observational uncertainties, 2) large amounts

of energy are needed in cosmic-rays at high-red-shifts, and



Footnote for bottom of page 17:-aq

* In later private discussion between the author and

P. Morrison, it became apparent that the energy problems

may not be too great with this (protar) hypothesis if, in-

deed, spinars existed at such redshifts of about 70-100

(Stecker 1971b). If it is considered that each spinar pro-

duces approximately 1062 ergs over a time scale of 10 7-10

years ( P. Morrison 1969. Astrophys.J. 157, L75.), a time

comparable to the Hubble time at these redshifts, then at

most 20 per cent of the presently observed galaxies are need-

ed to have arisen from this early spinar state in order to

provide the cosmic-ray energy needed to account for the dif-

fuse y-radiation above 1 MeV. At a reshift of about 70,the

free-fall time for forming spinars from gas clouds is comparable

to the Hubble time. This may provide a natural upper limit

to the redshift, zMAX , for primordial cosmic-ray production

in the spinar model. (It should, however, be noted that such

spinars may arise in other ways (see Stecker 1971b) and that

they may now be a class of moribund objects unrelated to gal-

axies as we see them now).
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3) the maximum red-shift for cosmic-ray production (ZMAx)

is a free-parameter chosen to fit the observations. The matter-

antimatter annihilation hypothesis does not suffer from the

above mentioned problems. The parameter ZMAX does not enter

into the theory; annihilations occur at all red-shifts and

the 1 Mev-flattening is an absorption effect as discussed

earlier. The transport equation (17) was solved to deter-

mine the exact form of the spectrum. Energy considerations

do not present a problem. Another advantage of the theory

is that it arises as a natural effect in a cosmology such

as that suggested by Omnes (see papers of Omnes, Schatzman

and Puget; these proceedings). Figure 17 shows a detailed

comparison of the annihilation hypothesis spectrum with

present observations assuming FANN=2.5 (see discussion of

Stecker and Puget (1972)). The two component model shown

presents an excellent fit to the observational data.

Several other models of isotropic y-ray production have

been put forward recently. One suggestion is that the whole

spectrum in the 10-3-10 2MeV range is due to Compton inter-

actions of intergalactic electrons with the universal black-

body radiation (Felten 1965, Gould 1965, Hoyle 1965, Fazio,

Stecker and Wright 1966, Felten and Morrison 1966). In its

most recent version Brecher and Morrison (1969) have attempted

to explain the observed spectral features using the Compton

hypothesis, vis., the steepening in the spectrum at '40KeV
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and flattening above 1 MeV. The Brecher-Morrison spectrum

is shown in Figure 18, superimposed on the "data-curve" of

Figure 12. The fit is reasonable except at the extreme

high and low energy ends of the energy range. However,

Cowsik and Kobetich (1972) have recently recalculated the

Brecher-Morrison spectrum using a true blackbody target

spectrum and a more realistic energy distribution for

Compton scattered photons (rather than the 6 -function

approximations used by Brecher and Morrison). The result is

a smearing out of the spectral features of the Brecher-

Morrison model into a smooth power-law spectrum. Other

problems with the Brecher-Morrison model stem from the

fact that in order to get a large enough flux generated,

electrons are required to leak out of normal galaxies in

a time much shorter than the 107 y deduced for protons on

the basic of cosmic-ray isotropy measurements.

Another hypothesis which attemps to account for the

whole photon spectrum is the electron-bremsstrahlung hypo-

thesis. Figure 19, which compares the spectrum generated

by this process with the observations shows an excellent

fit with the theoretical spectrum based on calculations

by Arons, McCray and Silk (1971) below 1 MeV and Stecker

and Morgan (1972) above 1 MeV. The break at ~ 3.5 MeV is due to

energy loss by cosmic-ray electrons interacting with the 2.7K

blackbody radiation. Unfortunately, we again have severe
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energetic problems with this process, bremsstrahlung being

an inherently inefficient y-ray generating mechanism. An-

other problem lies in getting galaxies to leak low-energy

non-relativistic electrons at a fast enough rate. Assuming

this could be done, an electron spectrum would be distorted

by heating the intergalactic medium to 10 K. The problems

with this mechanism have been discussed by Setti and Rees

(1970), Prilutskii and Rozental (1971) and Cowsik and Pal

(1971). (See paper of Cowsik; these proceedings.)

One additional mechanism for producing a second com-

ponent of y-radiation was suggested by Syunyaev (1970),

viz., thermal bremsstrahlung from relativistic electrons in

a 20 MeV plasma in such objects as the nuclei of Seyfert

galaxies. This, of course, immediately presents the pro-

blem of having enough Seyfert Galaxies to account for the

observed flux. However, a much more serious problem with

the fundamental physics of the mechanism has been pointed

out by Prilutskii, et al. (1971). They notice that in order

to contain the hot relativistic plasma, a magnetic field is

required of a strength such that

H2
H > n kT (2
8 - e

In that case, the ratio, R, of the electron energy loss

rate from synchrotron radiation to that from bremsstrahlung

is of the order of
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STC(H2/8T) (kTe/m c 2 2  -1 2 2R T e e T (kTe/m c )2>>1 (22)

o acn kT -e e

2 - 1

for a relativistic plasma where kTe >m c and a 137

(aT is the Thomson cross section). In fact, for a plasma

of temperature TMeV given in MeV,

R Z 500 T 2  (23)

Thus, in an optically thin plasma, the synchrotron loss

rate is the dominant loss term in the energy-equilibrium equa-

tion determining the equilibrium electron spectrum which will

insure that the electrons have a non-thermal spectrum and

produce non-thermal radiation. In addition, the 20 MeV

cutoff in the electron spectrum suggested by Sunyaev will not

exist. The details of the argument are further described

by Prilutskii, et al. (1971).

It is the opinion of the author, based on the previous

discussion, that the most promising theoretical interpreta-

tion of the unexpected increase in the observed background

flux of y-radiation above 1 MeV at present is that this

radiation has arisen from the annihilation of nucleons and

antinucleons, primarily at high red-shifts, on the boundaries

between regions of matter and antimatter (Stecker, et al.

1971, Stecker and Puget 1972; see papers of Omnes, Schatzman

and Puget; these proceedings). This conclusion is, of

course, conditional upon future observations and theoretical

investigations.
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The argument presented in the paper of Steigmen else-

where in these proceedings put restrictions on baryon-

symmetric cosmologies, but nonetheless are not in con-

flict with the particular cosmological model discussed

here and in the papers of Omnes, Schatzman and Puget

(these proceedings).

Tables 7 and 8 summarize some of the significant as-

pects and spectral attributes of the various mechanisms

important for the production of the diffuse cosmic y-

radiation. The last column in table 7 lists the cosmic

domains where the various mechanisms probably play an im-

portant role. The results from OSO 3 and SAS 2, as sum-

marized in these prodeedings in the papers of Share and

Kniffen, et al., indicate that in the energy range ab-

ove 50 MeV there is a distinct hard component of galactic

origin and a much softer, high galactic latitude com-

ponent, of extragalactic origin. The galactic component

appears to be predominantly ( i.e., greater than 50 per

cent) of fo - decay origin and therefore is small rela-

tive to the steep extragalactic component much below 50

MeV. The extragalactic component fits onto the Apollo

data (see paper of Peterson and Trombka,these proceedings)

below 30 MeV so that all indications are that the flux

below 30 MeV is overwhelmingly extragalactic. Because the

galactic flux is much harder above 100 MeV that the ex-

tragalactic flux, the galaxy stands out well above the ex-
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tragalactic background at these energies. However, below

30 MeV, the galaxy becomes relatively dim and blends into

to background as only a small perturbation. These conclu-

sions are contrary to the galactic origin hypothesis for

0.2 to 10 MeV y-radiation discussed by Cowsik in these

proceedings, but appear to be at present more consistent

with recent satellite observations as presented at this

conference.

If the galactic disk component of y-radiation is pri-

marily of 0-decay origin, I will stand by my previous

arguments (Stecker 1969a, Stecher and Stecker 1970,

Stecher 1971a, Chapter 8) that the OSO-3 measurements of

Kraushaar, et al. (1972) and those obtained by SAS-2

(Kniffen, et al., these proceedings) indicate that there

must be a substantial amount of molecular hydrogen in the

galaxy. These are implied by my recent calculations of

the y-ray production rate (Stecker 1973) which confirm my

earlier calculations of 1.3±0.2x10 -2 5 S-1 (see Table 1),

but are now on a much more solid basis. The cosmic-ray

isotropy measurements do not suggest a large gradient over

the galactic disk, in which case the intensity in our

region may be typical of the galactic intensity. Forth-

coming results from SAS -2 and Copernicus should settle

the question in the near future.
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In the galactic center region, we expect the flux to

be somewhat softer than in the disk as a whole because of

a significant component from Compton interactions (Stecher

and Stecker 1970, Stecker 1971a, Chapter 8). Preliminary

observational results suggest that this is the case (see

papers of Share and Kniffen et al. these proceedings).

Again, here we await the final results from SAS-2.

The note of anticipation here is a good note to end

on because, it seems, that at the time of this first

international y-ray astrophysics symposium we are all on

the threshold of a new era of observational y-ray

astronomy.
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TABLE 1.

Y-RAY PRODUCTION RATE
FROM THE DECAY OF le-MESONS

PRODUCED IN INTERSTELLAR pp,pa,ap
COSMIC-RAY INTERACTIONS

REFERENCE ENERGY RANGE RATE PER H ATOM (x 102 5 ) S- 1

POLLACK AND FAZIO (1963) >O MeV 1.2

DILWORTH, et al. (1968) >50 MeV 1.1

STECKER (1970) >100 MeV 1.3+ 0.2

CAVALLO AND GOULD (1971) >100 MeV 1.8 + 0.54

LEVY AND GOLDSMITH (1972) > 100 MeV 3.2

KRAUSHAAR, et al. (1972)* >100 MeV <1.6

STECKER (1973) > 100 MeV <(1.51 ± 0.23)



TABLE 2. GAMMA-RAY MULTIPLICITY AND
BRANCHING RATIOS FROM HYPERON AND MESON DECAYS

DECAY MODE BRANCHING RATIO (R) MULTIPLICITY( r ) Rf
or -- 27 1.00 2 2.00

Z -- A + 7 1.00 1 1.00

Ki -4 r + r 0.215 2 0.430

Ko 2r0  %(0.311) 4 0.6221

e2 3r o  %(0.265) 6 0.795
0 + -0

K -0. r + + r %(0.114) 2 0.114

A -n + r 0.331 2 0.662

Z+- p + r0 0.510 2 1.02



TABLE 3 HYPERON CROSS-SECTION DATA

LAMBDA NEUTRAL SIGMA POSITIVE SIGMA
PROTQN CROSS SECTION CROSS SECTION CROSS SECTION
MOMENTUM (GeV/c) (mb) (mb) (mb)

4.7 0.051 0.049 0.083

6 0.259 0.077

10 0.472 0.196 0.239

23.1 LAMBDA + NEUTRAL SIGMA CROSS
SECTION * 0.77

245 LAMBDA + NEUTRAL SIGMA CROSS
SECTION - 1.13

TABLE 4. ISOBAR CROSS-SECTION DATA

INCIDENT CROSS SECTION (mb)
MOMENTUM
(GeV/c) A (1.237) N (1.410) N (1.618) N (1.688) A (2.190)

2.86 3.8

4.6 1.5 0.63 0.68 0.7

6 0.376 -

6.06 0.6 0.66 0.45 0.5 -

7.88 0.41 0.4 0.31 031 .46 -

10 0.184 0.544 0.196 0.562

15 0.142 0.602 0.160 0.638

20 0.660 0.170 0.560 0.128

30 0.744 0.166 0.576 0.108



TABLE 5. PRODUCTION AND DECAY PARAMETERS
FOR A,E + fo, N (1.410), AND N (1.688)

PRODUCTION BRANCHING
THRESHOLD RATIO FOR ASSUMED PRODUCTION

ENERGY (GeV) -PRODUCING CROSS SECTION AT DECAY TIME
PARTICLE DECAY SCHEME MASS (GeV) IN P-P COLLISION MODES HIGH ENERGIES (mb) (sec)

N (1.688) N+ (1.688)-+N + ro 1.688 1.80 0.33t 0.6 10-2 3

N (1.410) N+ (1.410)-N + ro 1.410 1.24 0.33t 0.6 < 123

Z+ Z-t . p+ r e  1.189 1.90 0.510 0.8 .. 1i10

z Ze A+ 7 1.192 1.90 1.00 0.4 < 114

A A-* n+ wr 1.115 1.70 0.331 0.4 '1(-10

t FOR SIMPLICITY, IT IS ASSUMED THAT ALL DECAYS OCCUR VIA THE i-PROCESS. MORE PRECISELY,
-10 TO 15% OF THE DECAYS OCCUR VIA THE PRODUCTION OF TWO PIONS.



TABLE 6. PARAMETERS FOR DETERMINING GAMMA-RAY
SPECTRA FROM VARIOUS PIONIZATION MODELS

VALID g/b
MODEL ENERGY RANGE a b r = 2.5 r = 2.7 r =3.2

FERMI'S MODEL ALL Ep 0.25 0.75 2.67 2.93 3.6

(FERMI, 1951)

ONE-FIREBALL MODEL Ep < 150 GeV 0.5 0.5 3.0 3.4 NOT
APPLICABLE •

TWO-FIREBALL MODEL Ep > 103 GeV 0.25 0.75 NOT 2.93 3.6
APPLICABLE

LANDAU'S MODEL ALL Ep - - GAMMA-RAY SPECTRUM

PROPORTIONAL TO E-3.2



TABLE 7.

MECHANISM PARTICLE PRIMARILY INVOLVED INTERACTION TYPE PROBABLE IMPORTANCE

COMPTON INTERACTIONS COSMIC-RAY ELECTRONS AND ELECTROMAGNETIC EXTRAGALACTIC INTERACTIONS
LOW ENERGY PHOTONS WITH 2.7 K BLACKBODY PHOTONS

BREMSSTRAHLUNG COSMIC-RAY ELECTRONS AND ELECTROMAGNETIC EXTRAGALACTIC, POSSIBLY
INTERACTIONS COSMIC GAS GALACTIC BELOW 10 MeV

NEUTRAL PION PROD- COSMIC-RAY PROTONS AND STRONG GALACTIC, POSSIBLY EXTRAGALACTIC
UCTION (INELASTIC COSMIC GAS
COSMIC-RAY INTER-

ACTIONS)

NEUTRAL PION PROD- PROTONS AND ANTIPROTONS STRONG EXTRAGALACTIC, COSMOLOGICAL
UCTION IN MATTER-

ANTIMATTER ANNIHIL-
ATION.



TABLE 8.

y-RAY SPECTRUM CHARACTERISTICS
MECHANISM

SINGLE INTERACTION GALACTIC SPECTRUM COSMOLOGICAL SPECTRUM

COMPTON INTERACTIONS FLAT AT TYPICAL COSMIC-RAY POWER-LAW ROUGHLY POWER-LAW ROUGHLY
ENERGIES I(E ) ~ E- 2  I (E ) E-2

PEAKED TOWARD HIGH PHOTON ENER- RELATION BETWEEN RELATION BETWEEN

GY AT ULTRAHIGH ENERGIES. EXPONENTS EXPONENTS

(KLEIN-NISHINA THEORY) fI =( e+ 1) /2 , = (F +1) /2

BREMSSTRAHLUNG FLAT AT RELATIVISTIC ENERGIES. POWER-LAW ROUGHLY POWER-LAW WITH POSSIBLE CHANGES

INTERACTIONS PEAKED TOWARD LOW PHOTON ENERGY I ~ E 3  OF EXPONENT AT - 0.04, -1, and

AT NON -RELATIVISTIC ENERGIES. fb=e (RELATIVISTIC) ~ 3.5 MeV.

f= (1 + 1), NON-REL.

NEUTRAL PION PROD- FLAT AND SYMMETRIC AROUND mr c 2 /2 MAXIMUM AT mr c2 /2. MAXIMUM IS REDSHIFTED TO SOME

UCTION (INELASTIC ON A LOG E GRAPH NEARLY FLAT NEAR MAX- ENERGY BETWEEN -1 AND - 70MeV.

COSMIC-RAY INTER- (FOR DECAY OF A SINGLE PION) IMUM AND SYMMETRIC ON (NOTE: m 7 c2 /2 70 MeV).

ACTIONS) A LOG E GRAPH. POWER- POWER -LAW AT HIGHER ENERGIES.

LAW ROUGHLY I - E- 3 AB-

OVE A FEW HUNDRED MeV.

NEUTRAL PION PROD- FLAT AND SYMMETRIC AROUND m7 r c2 /2 EXPECT NONEXISTENT SPECTRUM POWER-LAW BETWEEN

UCTION IN MATTER- ON A LOG Ey GRAPH - 5 AND - 50 MeV, TURNS OVER

ANTIMATTER ANNIHIL- (FOR DECAY OF A SINGLE PION) BELOW 5 MeV AND FALLS OFF MORE

ATION. SHARPLY ABOVE 50 MeV.



FIGURE CAPTIONS

Figure 1. Gamma-ray spectra from the decay of neutral pions

for various simple pion energy distributions.

Figure 2. Idealized superposition of y-ray spectra from the

decay of pions having various energy distributions.

Figure 3. The calculated differential production spectrum of

y-rays produced in cosmic-ray interactions in the

galaxy based on the "isobar (i)-plus-fireball (f)"

model of Stecker (1970).

Figure 4. A comparison of the shapes of the integral

galactic pion-decay energy spectra calculated by

Stecker (1970) and Cavallo and Gould (1971). The

total production rate is normalized to unity.

Figure 5. Cross section times multiplicity for neutral pion

production in p-p interactions as a function of

incident kinetic energy.

Figure 6. Comparison of accelerator data from Figure 5 with

the assumptions made by Levy and Goldsmith (1972).

Figure 7. Differential neutral pion production function

from p-p interactions.

Figure 8. Integral y-ray production function from the decay

of neutral pions produced in p-p interactions.

Figure 9. Calculated y-ray spectra from various secondary

particles produced in galactic cosmic-ray inter-

actions (Stecker 1971).



Figure 10. Total calculated galactic y-ray production

spectrum from cosmic-ray interactions (Stecker

1971).

Figure 11. Normalized local differential y-ray spectrum

from p-p annihilation at rest.

Figure 12. Recent observational results on the cosmic y-ray

background spectrum.

Figure 13. The cosmological y-ray spectrum from matter-anti-

matter annihilation calculated by solving the

CPT equation numerically for Q = 1. The solid

line represents the complete solution. The other

curves represent the effect of neglecting the

absorption and scattering (transport) terms in

equation (17).

Figure 14. The effect of absorption of y-rays at high red-

shifts by the protogalactic gas.

Figure 15. The critical redshift for absorption of y-radia-

tion as a function of observed y-ray energy.

Figure 16. Comparison of the observed background with a two-

component model involving the production and de-

cay of neutral pions produced in intergalactic

cosmic-ray interactions at redshifts up to 100.

Figure 17. Comparison of the observed background spectrum

with a two-component model involving the matter-

antimatter hypothesis as discussed in the text.



Figure 18. Comparison of the observedbackground spectrum

with the Brecher-Morrison model.

Figure 19. Comparison of the observed background spectrum

with the electron bremsstrahlurg model as dis-

cussed by Arons, et al. (1971) and Stecker and

Morgan (1972) with a spectral break at EB= 3.5

MeV as discussed by Stecker and Morgan.
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Gamma-Ray Astronomy and Cosmic-Ray Origin Theory

V. L. Ginzburg

P. N. Lebedev Physical Institute

Academy of Sciences of USSR

Moscow, USSR

The science of Y-ray astronomy will yield entirely new information

which cannot be obtained by optical, radio, or X-ray astronomy and

which will be important for the whole study of high energy astrophysics,

including the astrophysics of cosmic rays and the problem of their

origin. Indeed, only Y-ray astronomy allows us to study the nuclear

component of cosmic rays far from the Earth. (We will refer to the

nuclear component here as "cosmic rays" and the electron-positron

component as "relativistic electrons".)

Before the present y-ray observations, we had only indirect

knowledge about the cosmic-rays far from the Earth, this knowledge

obtained mainly by radio observations. The radioastronomical data,

as is well known, enable us to obtain the form of the relativistic

electron spectrum, but the spectrum itself, and the corresponding

energy density of the electrons, we, can be deduced only by making

an additional assumption about the strength of the magnetic field H

in the radiating region. To estimate the energy density of the cosmic

rays, wcr, we have also to assume a relation between Wcr and we. In

fact, it is usually assumed that they are proportional, i.e.

W =W -1 2
r r e (H /8)V (1)Wcr = r~e
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Here wcr= W crV, We = w eV and (H 2 /8T)V are respectively the energy

of the cosmic rays, the relativistic electrons and the magnetic field

in the source of volume V, Kr = (Wcr/We) and EH = (H/81rwcr).

Thus, from radio astronomy observations (and also knowing the

distance to the source, R) we can determine the quantities wcr, We,

and H only by fixing the values of Kr and KH. Near the Earth,

Kr - 100, and in quasiequilibrium conditions, probably %H - 1.

These values are usually assumed, but in doing this two far-reaching

assumptions are made. In nonstationary sources of cosmic rays, it

is entirely possible that %H < 1 or even << 1. Close to strong sources

of infrared and optical radiation it may turn out that xr >> 100

because electrons undergo rapid energy loss. It is possible that

in some cases, if mainly electrons are accelerated, Rr << 100.

It is, in principle, possible to use radio and X-ray data together

to determine the magnetic field strength, H, itself (or the quantity

Krk) if the radio emission mechanism is synchrotron radiation and

the X-radiation is produced by inverse Compton scattering of the same

relativistic electrons in a known radiation field. But, here too,

we cannot find the energy of the cosmic rays Wcr directly without

assuming the values of Kr or XH"

A vital question has not yet been answered concerning the energy

density of cosmic rays Wcr,Mg = WMg in the metagalaxy (or the meta-

galactic region close to the galaxy). Metagalactic models for the

origin of cosmic rays are still being discussed (Setti and Woltjer

1971, Burbidge and Brecher 1971, Shklovskii 1971) and are sometimes

even considered preferable to galactic models for the origin of
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cosmic rays. In the metagalactic models, wMg wG and wG  wcr,G

10-12 erg/cm 3 , is the energy density of cosmic rays at the earth and,

we may also assume, in a considerable part of the galaxy. I have

previously given my views on the origin of cosmic rays on many occasions

(Ginzburg 1970, 1971; Ginzburg and Syrovatskii 1964, 1967, 1971).

I feel that the metagalactic models are much less likely than the

galactic models of the origin of cosmic rays. The main arguments

rely on energy considerations and are also connected with y-ray

observations. However, these and other arguments are not yet conclusive,

especially in regard to local metagalactic models in which wMg wG

only in a restricted region in the vicinity of the galaxy.

Since we assume fewer relativistic electrons in the metagalaxy

than at the earth (cf. Ginzburg 1970), in the metagalactic models far

from the galaxy, nr >  100. It is also hard to doubt that in inter-

galactic space KH << 1 since for H 1, HMg ~ 5 x 106 oe. Therefore,

we cannot rely on radio and X-ray data to determine the cosmic ray

intensity in remote regions of the galaxy and in radiogalaxies and

determine the validity of the metagalactic models; it is necessary to

find a new, independent method. Such a method is provided by Y-ray

astronomy (see for instance Ginzburg and Syrovatskii 1964, 1965,

Clark, Garmire and Kraushaar 1968, 1970, Fazio 1968, Stecker 1971,

Cavallo and Gould 1971, Fichtel et al. 1972).
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Protons and nuclei in cosmic rays collide with protons and

nuclei of intergalactic and interstellar gas. As the result of these

collisions, various particles are produced. Of particular importance

here are the secondary rro-mesons and 0o-hyperons which quickly decay

to produce Y-rays. The probabilities and kinematics of all the

essential reactions are fairly well known (Stecker 1971, Cavallo

and Gould 1971) and enable us to calculate the spectrum of Y-rays

with an accuracy which is entirely sufficient from the point of view

of cosmic-ray origin theory (see the paper by Stecker, these

proceedings). The integral flux of y-rays from a discrete source

is given by the expression

23103 -2
F (>E) = I (>E) d 5 x 1023 (Icr )M photons/cm2 s (2)F (>E ) * I (>E ) do cr

where Q is the solid angle subtended by the source, R is the distance

to the source (in cm) and M is the mass of gas in the source in grams.

The chemical abundances in the source are assumed to be the same as

the common abundances of the elements (especially in the case of He)

and thus the average mass of a gas nucleus is taken to be 2 x 10-2 4 g.

The value for (IG)E = 100 MeV is taken from Figure 1 to be 10- 26

Y
S 1Sr 1 as given by Stecker (1971). Therefore

-3
F (>E) = 5 x 10 - 3 M (Wcr /WG) photons/cm 2s (3)
YR
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where w cr is the cosmic-ray energy density in the source, assuming

that the form of their spectrum is the same as that observed near

the Earth. Within the limits of this approximation, for sources like

the galaxy, where nonionized atomic hydrogen predominates, M = 1.2 MH,

where MHI is the mass of neutral atomic hydrogen.

0
The spectrum of y-rays from T- -decay, is concentrated mainly in

the energy range above 50-100 MeV (where the y-rays do not originate

in highly redshifted sources). (See Figure 1 and also

the paper by Stecker, these proceedings.) For y-rays from pion-

decay, we find

F (E > 50 MeV) - F (E > 100 MeV)

= _- 0.12 (4)

F ( E > 100 MeV)
Y Y

In the case of bremsstrahlung radiation from relativistic electrons

with the spectrum I (E) = KE - .6, = 2.05, and for the case of

synchrotron radiation or inverse Compton scattering from relativistic

electrons 9 = 0.74. Thus, spectral measurements of the y-ray flux

allow us, in principle, to distinguish between the various production

processes and establish the "nuclear" nature of the Y-radiation.

Once this is done, measurements of the flux allow us to determine the

quantity wcr/wG in the source. (Here we have assumed that the cosmic-

ray spectrum in the source is similar to the spectrum observed near

the earth. This determination even by the method given above, would

represent an important step forward and, I feel, would be a very

important achievement for high-energy astrophysics.
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I wish to illustrate my remarks with two examples of the potential

for Y-ray observations of specific astronomical objects, viz., the

Magellanic clouds and the galactic center. Observations of the

Magellanic clouds provide a potential test for the local metagalactic

origin model as well as other metagalactic models of the origin of

cosmic rays. If wMg << wG  10-12 erg/cm3 the metagalactic models

can be discarded (Ginzburg 1972). For the Large Magellanic Cloud (LMC)

and the Small Magellanic Cloud (SMC), their distances and neutral-

hydrogen masses are approximately equal and are given by (Bok 1966).

R(LMC) = 55 kpc, R(SMC) = 63 kpc,

MI(LMC) = 1.1 x 104 2 g, MHI(SMC) = 0.8 x 104 2 g.

Therefore, if wcr = WG'

F ,LMC(> 100 MeV) 2 x 10- 7 , FySMC(> 100 MeV) -1 x 10 7 photons/cm2 s (

It is important here to note that the fluxes given above follow

immediately for any metagalactic model because for these models, by

definition, for the Magellanic clouds as well as for the galaxy,

the role played by their internal cosmic-ray sources is unimportant

and therefore wMg Z wG WLMC  WSMC.

For the galactic models, on the contrary, there is no reason to

expect the above quality to hold. Even assuming similar activity of

cosmic-ray sources in our galaxy and the Magellanic clouds, it is

probable that wG > WLMC > SMC because of the smaller sizes of the
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clouds and the correspondingly more rapid escape of cosmic rays

from them. Besides, in our galaxy there is apparently a strong central

source of cosmic rays (which will be presently discussed), but in the

clouds there is probably no such source.

Thus, if the metagalactic models are valid, the flux from both

Magellanic clouds should be 3 x 10-7 photons/cm2s. (Any additional

"non-nuclear" sources of Y-radiation in the clouds would only serve

to increase the flux.)

I now turn to the important question of Y-radiation from the

region of the galactic center. Such radiation has already been

observed (see elsewhere in these proceedings). Using the values

given by Clark, Garmire and Kraushaar 1970 and Fichtel, et al. (1972),

we find

F (E > 100 MeV) = (3-10) x 10-5 photons/cm 2s (6)

On the basis of spectral measurements (Fichtel et al. 1972) and

from several indirect observations, it seems likely that we are

observing Y-rays from the galactic center region which were produced

by cosmic rays and are the products of the decay of o -mesons.

Accepting this interpretation, we shall draw several conclusions

(Ginzburg and Khazan 1972). By inserting the result (6) into equation

(3), we conclude that the galactic center region contains a cosmic-

ray component of total energy
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Wc = w V (3-10) x 1066(wG/nc) - (3-10) x 105 4 /n c erg (7)

taking R = 10 kpc. If we assume that the central source is larger

than 300 pc, we cannot assume that the gas density is much greater

than - 1 cm- . (If L 1021 cm, Vc ~ 1063s cm and M C 2 x 103 9 nc c c

106 ncM where Mn is the mass of the sun. If nc - 10 cm 3 , Mc - 107ME

which is probably an upper limit for an area of this size.) For nc -

1 cm 3 , it follows from equation (7) that Wc - (3-10)xl05 4 erg, which

is only an order of magnitude smaller than the total energy of cosmic

rays in the galaxy (Ginzburg 1969, Ginzburg and Syrovatskii 1971,

Ginzburg 1970).

On the other hand, a result of the order of 10s s erg is obtained

from an analysis of astronomical data indicating that there was an

explosion in the region of the galactic nucleus approximately 107

years ago (Oort 1971, van der Kruit 1971). A similar number for

the energy of cosmic rays produced in an explosion of the galactic

nucleus was used in Ginzburg and Syrovatskii (1964).

If the size of the central Y-ray source is less than 200-300 pc,

then nc can be greater than 10 cm- 3 . We then obtain a smaller estimate

for Wc from equation (7), but the intensity of cosmic rays Icr,c Ic

is not diminished. For example, if nc = 10 cm 3 and Vc= 1063 cm3 ,

Wc - (3-10) x 1053 and Ic/I G = Wc/WG _ (3-10) x 102. It seems that

it would be rather difficult to confine cosmic-rays within a smaller

volume for 107 years. Therefore the value of Wc 3 x 1053 erg would

seem to represent a lower limit and it is more likely that Wc> 3 x 1054

erg. If this is the case, the central cosmic-ray source would be
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essential from the point of view of the total energy balance of cosmic

rays in the galaxy. The average power of injection would be

Uc  Wc/Tc 1040 erg/s with Tc = 107 years). The number is of the

same order of magnitude as the total power of injection used in the

galactic-origin models (Ginzburg and Syrovatskii 1964, Ginzburg 1969,

1970).

If future measurements confirm the existence of a central galactic

Y-ray source of Tro-decay origin, then we will have one more important

argument against the metagalactic models for the origin of cosmic

rays, since our own galaxy will then prove sufficient to supply a

considerable part of the observed cosmic rays as opposed to other

galaxies and quasars which would be the predominant source of cosmic

rays in the metagalactic models. This would be true without even

taking into account the production of cosmic rays in supernovae and

pulsars. (In fact, I feel that the role of supernovae is essential.)

The assumption of metagalactic sources for cosmic rays will thus become

superfluous.



References

Bok, B. J., 1966, Ann. Rev. Astron. and Astrophys. 4, 95.

Burbidge, G. and Brecher, K., 1971, Comm. Astrophys. and Space Sci.

3, 140.

Cavallo, G. and Gould, R. J., 1971, Nuovo Cimento B2, 77.

Clark, G. W., Garmire, G. P. and Kraushaar, W. L., 1968, Astl phys.

J. (Lett.) 153, 1203.

Clark, G. W., Garmire, G. P. and Kraushaar, W. L., 1970, Bull. Amer.

Phys. Soc. 15, 564.

Fazio, G. G., 1968, Ann. Rev. Astron. and Astrophys. 5, 481.

Fichtel, C., Hartman, R., Kniffen, D., and Sommer, N., 1972,

Astrophys. J. 171, 31.

Gin7burg, V. L., 1970, Comm. Astrophys. and Space Phys. 2, 1.

Ginzburg, V. L., 1971, Proc. 12th Int'l. Conf. on Cosmic Rays.

Ginzburg, V. L., 1972, Nature Phys. Sci. 239, 8.

Ginzburg, V. L. and Khazan, Ya.M., Astrophys. Lett. 12, 155.

Ginzburg, V. L. and Syrovatskii, S. I., 1964, The Origin of Cosmic

Rays (New York; Pergamon Press).

Ginzburg, V. L. and Syrovatskii, S. I., 1965, Uspekhi. Fiz. Nank 87,

65.

Ginzburg, V. L. and Syrovatskii, S. I., 1967, Proc. IAU Symp. No. 31,

Radio Astron. and the Galactic System (H. van Woerden, ed.)

(New York, Academic Press).

Ginzburg, V. L. and Syrovatskii, S. I., 1971, Proc. 12th Int'l. Conf.

on Cosmic Rays, pg. 53.



Oort, J. H., 1971, Les Noyau des Galaxies, Pontifical Academia

Scientiarum, p. 321.

Setti, G. and Woltjer, L., 1971, Nature Phys. Sci. 231, 57.

Shklovskii, 1971, Astron. Tsirkulyar SSSR 661, 1.

Stecker, F. W., 1971, Cosmic Gamma Rays, NASA SP-249 (Washington,

D. C.; U.S. Government Printing Office).

Van der Kruit, P. C., 1971, Astron. and Astrophys. B, 405.



-26
10

-27
10

2 3
10 10 10

E (MeV)



I V73 2

PROSPECTS FOR NUCLEAR-GAMMA-RAY ASTRONOMY*

Donald D. Clayton
Rice University, Houston 77001

ABSTRACT

Gamma rays emitted as a form of nuclear deexcitation

offer hope of another new astronomy. I consider such gamma

rays coming from two sources outside the solar system: (1)

radioactive decay of fresh nuclear products of explosive

nucleosynthesis, and (2) scattering of low-energy cosmic

rays. The former should be detectable and will provide a

factual base for many suppositions about the site and

history of nucleosynthesis. The latter may be detectable and,

if so, will probably provide factual information about high-

flux regions of cosmic radiation.

*Invited address to "International Symposium and Workshop
on Gamma-Ray Astrophysics", NASA Goddard, May 1973
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I. INTRODUCTION

Each new astronomy has provided us with new types of

information. Radiations of Vastly differing wavelengths tend

naturally to have their origins in differing physical processes

of emission, so that the different astronomies record, by and

large, differing types of events. The enrichment of astronomical

knowledge is obvious. If history is any reliable guide, we

may expect to detect gamma-ray lines emitted during the electro-

magnetic deexcitation of nuclei. Their observation will con-

firm that excited states of nuclei are being produced, and the

fluxes and spectra will identify the specific nuclei and their

rate of excitation. Because extreme physical circumstances are

required for the production of excited nuclei at low densities

where they can be seen, unique information about the source

regions will be obtainable.

In this paper I consider prospects for two sources of

gamma rays from outside the solar system. Both radioactive

decay and inelastic collisions produce nuclei in excited

states. As Rutherford emphasized from the beginning,the

radioactivity would have all passed away were it not being

continually replenished. Therefore radioactive gamma-ray sources

in space will be associated with events of nucleosynthesis--

probably supernova explosions of some type. The fluxes and

spectra will depend on the yield of radioactive nuclei, their

gamma-ray emission lines, and their halflives. Inelastic

collisions with high-energy cosmic rays are probably not

important sources as far as nuclear-deexcitation gamma rays

are concerned. The average high-energy fluxes are known to

be too small. The best prospect here is for much larger fluxes
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of MeV particles, especially near the source regions. My

attention will fall outside the solar system, thereby intention-

ally passing over the sun, moon and planets as interesting

special sources.

II. EXPLOSIVE NUCLEOSYNTHESIS

The idea that the common intermediate-mass nuclei are

synthesized during their explosive ejection (Arnett and

Clayton 1970) from stars, rather than before it, has one extremely

important observational consequence. Several abundant nuclei

are ejected in the form of radioactive progenitors, and their

decay outside the star can clarify many unproven hypotheses

concerning nucleosynthesis. Specifically, if the gamma-ray

lines from radioactivity in supernova ejecta and in the

accumulated background of the universe can be detected (and

the anticipated fluxes are promising) it will be possible to:

(1) Prove supernovae eject new nuclei and measure the

supernova yield

(2) Prove nucleosynthesis occurs during the explosion

rather than prior to it

(3) Measure the supernova structure by the profiles of

the lines and their Compton tails

(4) Discover Galactic supernova remnants

(5) Demonstrate that nucleosynthesis is occurring to-

day in the universe and measure its average rate today in

the isotropic background

(6) Determine whether the average rate of nucleosynthesis

has been relatively constant or peaks in the distant past

(7) Gain additional information about the average density

in the universe
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(8) Evaluate evolving versus steady-state cosmologies.

That is a lot to promise; if it is correct, these obser-

vations will be as entertaining and profound as other great

experiments in astronomy, such as the solar neutrino ex-

periment and the microwave background experiment, for example.

My object will be to outline these possibilities as a guide

to the chances of successful detection.

(a) The Radioactive Species

The most abundant species having a radioactive progenitor
56is Fe. Bodansky, Clayton and Fowler (1968) showed that ejecta

in the process of silicon burning resemble the solar abundances

between A = 28 and A = 57 if they contain roughly equal amounts

of 28Si and 56Ni. This result suggested that several prominent
44 48 56nuclei, primarily Ca, Ti and Fe were ejected as radio-

active 44Ti, Cr and 56Ni respectively. Clayton and Woosley

(1969) strengthened that result by showing that if the silicon

burning had occurred slowly enough for beta decays to raise

the neutron excess to a value for which 56Fe itself could be

ejected during silicon burning, implausible overabundances of

key species would result. They further strengthened the case
for 56Ni by showing that something similar to an e-process

56
centered on Ni would also synthesize otherwise troublesome
58Ni, especially if the free-particle densities were somewhat

in excess of their equilibrium values. Clayton, Colgate and

Fishman (1969) used these discoveries to make the first

estimates of the importance of 44Ti, 48Cr and 56Ni to the

gamma-ray astronomy of young supernova remnants. Because

of the centrality of the 56Ni vs. Fe argument, Hainebach,

Arnett, Woosley and Clayton (1973) have pursued the evidence

favoring 56Ni even further. They show that two-or-three-

component e-processes with differing neutron enrichments
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(and with freezeout corrections) overwhelmingly select 56Ni

production when asked to produce the solar abundances by

superposition. I think the evidence now makes it virtually
56

certain that Fe was ejected dynamically from the synthesizing

events as 56Ni. The preference for low-n solutions [Arnett

and Clayton (1970); Arnett (1971); Woosley, Arnett and Clayton

(1973)] in explosive burning of carbon, oxygen, and silicon

and continuity arguments strongly suggest that 44Ca and 48Ti
44 48

were also ejected as Ti and Cr. The solar mass fractions

of these species, their half lives, and the prominent gamma-ray

lines emitted during their decay are included in Table 1. The
56 56
Co- Fe decay should be, because of its rich spectrum, high

abundance, and 77 day half life, the single most important

radioactive decay for gamma-ray astronomy. It remains possible,

however, that a less abundant product may prove to be easier

to detect if the exploding remnants remain opaque too long.

Clayton (1971) discovered that a significant fraction of
60 60Ni was probably synthesized as radioactive Fe, with

5 60
T = 3x10 yr, or perhaps as Co, with T= 5.26yr. In either

case gamma rays of 1.17 MeV and 1.33 MeV are subsequently

emitted. The arguments for and against 60Fe synthesis are

complex and by no means certain. About 1% of 60Ni could be

synthesized by arresting about half of the Cr seed at 60Cr
60

(which decays to Fe) in the rapid neutron-induced reactions

on seed nuclei during explosive carbon burning (Howard, Arnett,

Clayton and Woosley 1971, 1972). Several-to-fifty percent of
60Ni may have been synthesized as 60Fe directly from 56Fe

seed nuclei in the same event. Clayton (1971) has made the

intriguing observation in this regard that only 60Ni is abundant

enough to have absorbed the 56Fe seed in explosive carbon
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burning, thereby suggesting that much of the iron seed has been
60

arrested at Fe. Because of the strong (p,n) flows during high

temperature carbon burning, it also seems plausible that a per-

cent or so of the 60Ni is due to 60Co nuclei ejected in the
60

explosion. Although Co synthesis should be less efficient
60

than Fe synthesis, it may nonetheless be more important in

young remnants because of its favorable halflife, which is

long enough to assure transparency yet short enough to have a

detectably high decay rate. Without going in to the matter

further here, I let p60 be the percentage (i.e. fraction x 100)

of 60Ni nuclei synthesized as Fe nuclei and p6 0 be the
60

percentage synthesized as Co, and I expect

1 > p 6 0 (%) < 50

0.1 < p' (%) < 5
60

I notchere that Clayton (1971) did not explicitly include 60Co

in his considerations. However, there do appear to be circum-

stances in which the gamma rays due to 60Co synthesis could,

for many years, exceed those due to synthesis of all other

nuclei.

The r-process synthesizes many heavy radioactive nuclei,

which are expected to have unfortunately small yields. Clayton

and Craddock (1965) considered the flux expected from supernova

remnants if the r-process yield were great enough for the

"californium hypothesis" of Type I light curves to be correct.

In particular they calculated the expectations of the Crab

nebula in that regard. There is a large range of half lives

present in initial transbismuth debris, however, so their

conclusions on the 920 year-old Crab (that the strongest line
-4 -2 -1should be no greater than 10 cm sec ) would require re-



Table 1.Average Supernova Yiid (1.7x109 SN)

Nucleus XO Progenito 1i/2 YSN E (%) MeV

5 6 Fe 1.3x10- 3  56Co 77d 3.0x1054 0.84(100),1.24(67),2.60(17),1.03(16

1.76(14),3.26(13),2.02(11),e
+ (20)

56 Ni 6.1d 3.OxlO54 0.812(85),0.748(51),0.472(34),

1.56(15)

48Ti 2.3xl0- 6  Cr- 48V 16d 6.2x1051 0.983(100),1.31(97),e (50)

44Ca 1.9x10- 6 44i44Sc 48yr 5.6xl051 1.156(100),e +(94)

60Ni 2.0xl0- 5 60Fe(%P6 0 ) 3x10 5yr 4.4x1052 1.17(100),1.33(100)
6 0Co(%p60) 5.26yr

238U 1.3xl0-1 r-process 4.5x10 9yr 1.3x1047 Transuranic plus daughters

(example (example) (many weak possibilities)

Fe 3,3 x io C a ___ 4
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calculation for remnants having different ages and distances.

The main problems with this idea would seem to be that it re-

quires the r-process to be concentrated in relatively rare

events in order that these nuclei not be greatly overproduced

and that there seems to be no compelling reason to associate

the Type I light curves with radioactivity. I therefore

currently hold little hope for this gamma-ray source, although

additional clarifying remarks will be made later.

(b) Typical Supernova Yield

In the absence of more certain knowledge, I take a simple

model of galactic nucleosynthesis in supernovae. Arnett and

Clayton (1970) and, more specifically, Arnett (1971) have

described the conceptual framework more accurately; however,

my aim is only to extract typical numbers for the typical

supernova event. Let the explosively synthesized nuclei be

coproduced in the same abundance ratios that we find in the

solar system in identical supernova events occurring at the

Galactic rate

NSN = Re-t/TR. (1)

9Fowler (1972) finds that TR : 4 x 10 yr and Galactic age9
AG = 12 x 10 yr are not unreasonable caricatures of r-process

nucleosynthesis (which I take here to characterize all explosive

nucleosynthesis). Taking a current supernova rate No (today) =
-1 -1 SN

0.025 yr then gives R = 0.5 yr . The initial supernova rate

would, with these particular parametric values, have been

twenty times greater.
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Let the average yield of the typical event be such that

its product with the total number of events prior to the

birth of the sun shall have produced a galactic mass having

solar composition. The total number of such events is

t d S T -t /TRe eAG/TR
N J dt = N1 - e R e (2)SN NN SN R L

where t is the time of solar formation (approximately90
7 xl0 yrs). The number of events is nearly exponential in

AG /TR and multiplied by TR if TR < t , as seems likely. With

the specific choice of parameter values taken above, A /T = 3
G 9 R

and the number of events would have been N = 1.7 x 10 .
SN

If the mass of the Galaxy is 1.8 x 1011 M (Schmidt 1965)
-3

and the mass fraction of iron in the sun is X = 1.3 x 10

(Cameron 1968), and if the average composition of the galaxy

at that time was solar, the galaxy would have contained
8 56

2.3 x 10. M of Fe. The average yield for each of the9
1.7 x 109 contributing events would have been

8 56
2.3 x 10 M of Fe

M SN( Fe) = = 0.14 M /SN. (3)
1.7 x 10 SN events

The corresponding number of 56Fe atoms per event is

33 23
56 0.14(2.0 x 10 )(6.0 x 1023) 54

Y SN Fe) 56 = 3.0 x 10 (4)

56N
which would have been ejected initially as Ni atoms. These

numbers for several interesting abundances formed explosively

as radioactive progenitors are shown in Table 1.
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It is not difficult to question the appropriatness

of many of the assumptions leading to this estimate. However,

my point of view is that the simplest reasonable argument is

the most appropriate one for gearing our expectations.
60 60

Table 1 shows the total yield of Ni to be Y SN( Ni) =

4.4 x 1052 atoms persupernova. According to the earlier dis-
60 60

cussion, the yields of Fe and Co are evaluated as

60 50
Y SN( Fe) =4.4 x 10 P60SN"60

60 50 ,
Y S( Co) = 4.4 x 10 p6 0  (5)
SN 60

238
The yield of U under these assumptions is listed in

Table 1 only as an example of transbismuth r-process yield

rather than as a nucleus of particular importance for gamma-

ray astronomy. Indeed, Clayton and Craddock found that the

most important nuclei for the Crab were likely to be 249Cf

and 214Bi. Nonetheless it is instructive to note that this

"typical 238U yield" is about four orders of magnitude too

small for that required for the californium hypothesis of the

light curve. If the latter hypothesis is correct, the r-pro-

cess will have to have occurred in events about 104 times

less numerous than the typical supernovae we are considering

in this section. Whereas this is possible, it suggests that

all Type I events are not r-process events, in which case

the original hypothesis loses its raison d'etre.

(c) Typical Line Fluxes

If species Z decays with mean lifetime T(Z) = 1/k , and
z

if each decay is accompanied by gi photons of type i, then

the flux of those gamma rays at the earth due to a nearby
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supernova is

z YSN(z) z (6)
F = g e (6)1 i 2

4n R

where R is the distance to the supernova and t is the time

since its detonation. This formula neglects attenuation due

to absorption or scattering in the source and will, therefore,

be correct only for times long enough that the expanding remnant

has become transparent to gamma rays.

Using information from Table 1 one obtains

56 3.3x104 -(t/8.8d) -2 -1
I i R2 (kpc) s

R (kpc)

56 2.6x10 -(t/llld) -2 -(
F.( Co) = g. e cm s (8)

1 R (kpc)

48 26 -(t/23d) -2 -1
F.( V) = gi R2 (pc) e cm (9)

44 2. 1x10 -(t/69yr) -2 -1
Fi( Ti) g (10)2c

i R (kpc)

-7
60 7x10 60 -(t/4.3xlO yr) -2 -1

F i( Fe) = gi 2 e cm s (11)
R (kpc)

-2 ,
1.6x 2 pIF .6x10 P60 -(t/7.6yr) -2 -1

F.( Co) = g e cm (12)
SR (kpc)

Several of these fluxes are shown in Figure 1 as a function

of time. The supernova itself has been placed at R = 103kpc to

emphasize that the A = 56 lines may even be observable from

supernovae in other galaxies. A supernova in M31, for example,
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Figure 1. Prominent medium-lifetime gamma-ray line fluxes as a
function of time from a distant (d=106 pc) supernova ejecting 0.14M
of 56Ni and 2.Oxl M of 4 4Ti. The early growth reflects the in-
creasing transparency of an expanding model (Clayton et al 1969)
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56
would present a Co line flux above the detectable level of

-4 -2 -1
about 10 cm sec for more than a year. These lines show

a rise time, rather than a pure exponential decay, because a

specific model was adopted by Clayton et al. (1969) for the

transparency of the expanding supernova. They took a rather

optimistic (in light of recent nucleosynthesis theory) model--

a 0.5 M ball of iron expanding at 1.7 x 109 cm/sec so that

the product of mean density times radius is

13 -2 -2
p(t) R(t) % 8 x 10 t gm cm (13)

-2
which falls below 10 gm cm2 (a rough estimate of the optical

depth for gamma rays) for t > 3 x 106sec. Thus at best the

lines will be poorly visible for the first month. Even then

it is clear that Compton scattering will have a serious effect

on the gamma-ray spectrum near those times when they begin to

emerge. Brown (1973) has calculated this effect for some

special cases similar to those considered by Clayton et al.

(1969). Figure 2 shows one of his results, when 3.5 MeV and

1.25 MeV lines are emitted isotropically from a depth of

18.6 gm cm-2 within an iron sphere of radius 37.2 gm cm 2

The total mass of such a sphere depends upon its metric

radius, of course, so with R(t) = 1.7 x 109we find that the

mass whose line spectrum corresponds to Figure 2 is

M(Fig. 2) =( t )2 M (14)
2x10 sec

Therefore the total mass of that example could be any reason-

able multiple of the solar mass at time of order a few months.

The question of the mass of layers over-lying the CO core at

the time of detonation is even more uncertain, but it will
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Fig.2. Effect of Compton scattering on 3.5 MeV lines (solid histogram)

and 1.25 MeV lines (dashed histogram) emitted isotropically from
-2

a point at a depth of 18.6 gm cm2 from the surface of an Fe sphere
-2of radius 37.2 gm cm (Brown 1973).
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clearly be worthwhile to evaluate dynamic models of gamma-ray

opacity for exploding massive evolved stars. For the time being

I wish only to emphasize that whether the 5 6Ni lines emerge at

all (they did in Fig. 1) depends on the structure and dynamics

of the exploding object. Ideally we may one day watch these

and the 56Co lines rise to peak intensity before beginning their

decay, and the rise time of these fluxes will be a crucial measure
57

of the structure of the exploding object. The 270-day Co lines

from 57Ni progenitors may also play an important role in this

problem (Clayton 1973), although I have not included them here

due to their relatively low energies (136 keV and 122 keV). This

astronomy will allow us to measure that structure somewhat analo-

gously to the way neutrino astronomy has allowed us to measure

the interior of the sun -- and probably with all the surprises:

The 1.16 MeV line emitted subsequent to the decay of the 44Ti

could be quite strong in several present Galactic remnants, and

will surely emerge even if the A = 56 lines should happen not to

get out. In this sense the 44Ti synthesis may prove to be ex-

tremely important. The real need, of course, is for the Galaxy

to arrange a visible supernova, preferably after (if ever) instru-

ments like HEAOB are operational. The A = 48 lines, on the other

hand, seem likely to be of no special importance, because they are

both weaker and shorter lived than the 56Co lines.

The 60Co lines have not been entered on Figure 1, but a com-

parison of Eqs. (12) and (10) show that they are comparable to

those of 44Ti for about 10 years if p6 is around unity (i.e. about
60 60

1% of Ni is due to synthesis of Co, which requires about 2%
56 60

of Fe seed to reside at Co at completion of explosive carbon

burning). Remnants throughout the Galaxy (R < 20 kpc) should

ultimately prove detectable for a decade.

The 60Fe lines (actually the same as the 60Co lines but

with a much longer halflife) are also not shown in Figure 1.
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They are a special case due to the long 3 xl05yr halflife, which

insures that many radiating remnants exist but they may have

large angular size due to the long time available for dispersal.
-4 -2 -1For the flux to exceed a detectable 10 cm sec requires

R - 160 pc if 101 of 60Ni is due to synthesis of 60Fe. A circle
-4

of 160pc radius constitutes about 10-4 of the area of the Galactic

disk, and should thus contain one of the approximately 104 super-
60novae that should have occurred during the lifetime of Fe.

The size of a remnant 105 years old might cover a significant

fraction (even half!) the sky for an event about 100pc away,

however, so simple on-source-off-source differences will have to

be measured with this in mind. The radiation from such sources

seems more likely to appear as a general galactic background.

The general flux from a wide angle containing the galactic

center would be

-4 -2 -1F60 (Galactic) - 3 x 10 cm sec (15)

if P6 0 is about 10. This is also about the same as the average

flux from the Galaxy due to the 44Ti lines (Clayton 1971), but

in this case the actual flux depends on the details of the

positions and times of the last few Galactic supernovae.

As a very crude estimate of transbismuth fluxes, I will

assume that every transbismuth species is synthesized with a

yield YSN equal to that listed for 238U in Table 1. There are

so many different halflives in the r-process ejecta, moreover,

that one may roughly assume that, whatever the age of the

remnant, there exists one gamma producing nucleus with a halflife

approximately equal to the age of the remnant. This species

produces the largest flux. In this case Eq. (6) becomes

Y SN(r) e-1
F R2 t(16)4i~2
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which has the approximate value

-5
1.25 x10 -2 -1

Scm s (17)
r R (kpc) t (yrs)

It is obvious that these fluxes will not commonly be observable

unless the r-process is restricted to much rarer events, thereby

raising the yield of each event. This conclusion, stated earlier,

renders this particular prospect unlikely. Clayton and Craddock

(1965) took a yield four orders of magnitude greater to provide

radioactive power for the Crab light curve and were thereby able to

calculate marginally detectable lines from the Crab. Equation (17)
- -8 -2 -1

yields only F r 10 cm s from the Crab, and is probably ar
more realistic estimate. The site of the r-process is so poorly

understood, however, that a great surprise would come as no shock.

(d) The Universal Background

One need only appreciate that the average Galactic luminosity
40 -1

due to radioactive gamma rays has been 3 x 10 erg sec to realize

that their contribution to the isotropic background radiation may

be significant. The cosmological prinicple allows us to estimate
-1 -1

their flux very easily. Taking H = 55 km sec Mpc (Sandageo

1972), the observed universal density of matter is p = 1.7 x 10
-3 56

gm cm (Oort 1958). If the average mass fraction of Fe is
56 -3

X ( Fe) = 1.3 x10 , this corre-
-34 -3 56

sponds to 2.2 x 10 gm cm of Fe. Consequently, the average

iron number density in the observed universe is

56 -12 -3
n( Fe) = 2.3 x 10 cm (18)
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The flux of these gamma rays per steradian is (Clayton and Silk

1969)
_F c 56Sg n( Fe) (19)an 47r y

56where g is the number of gamma rays emitted per Fe nucleus
56synthesized. The value of g is 2.8 for only Co decays and

56 56Y
g = 4.9 if both Co decays are used. Taking the latter

Y
value yields

_F -2 -2 -1 -1S= 2.7 x 10 cm ster sec , (20)

To emphasize the size of this flux, Clayton and Silk pointed out

that it is as large as the total integrated universal background

at photon energies in excess of 300 keV: Clearly it must be an

important component of that background unless the A = 56 lines

do not escape from their sources. Because this estimate is based

on the observed mass density, it will be proportionately greater

if the universe contains "hidden matter" that has also synthesized
56
Fe.

The simple density argument does not determine the frequency

distribution of the photons comprising the flux in equation (19),
56

For those Fe nuclei synthesized early in the universe, the

associated gamma rays will now have been considerably redshifted.

It is just this feature that allows the spectrum to carry a wholly

new astrophysical datum; i.e. the redshift distribution in the

gamma-ray spectrum measures the distribution of the ages of 56Fe

nuclei. Hidden in it is the chronological account of the rate of

nucleosynthesis.
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Let f(t) be the rate per unit of cosmic time at which

56Fe nuclei were (and are being) synthesized. Let it be

normalized such that

t

o f(t)dt = 1 (21)
o

56
so that f(t)dt is the fraction of all Fe nuclei that were

synthesized at cosmic time t in the interval dt (to = cosmic

time today). If follows that f(t)dt is also the fraction of

A = 56 gamma rays whose travel times are t - t in the interval

dt. In any standard cosmological model the travel time t - t

is some function of the redshift z. Thus f(t) = f(z) and

f(t)(dt/dz)dz becomes the fraction of the photons having red-

shift z in the interval dz. The gamma-ray source function

per unit time per unit 56Fe nucleus per unit energy interval

in the rest frame is just

r(E,t) = P P.(E,t) = g. 6(E-Ei)f(t) (22)
i i

where the sum is over the lines of type i emitted with rest
56

energy E. at the rate of gi gammas per Fe nucleus synthesized.

The differential flux today due to gamma rays of type i is

i c ( 5 6  o (t) R(tt
Ea 47 o R(t) i R(t)

c n( 5 6 Fe) f (l+z)P [(l+z)E,t dz (23)
(4F o i 'dz

where E is the energy today of the photon and R(t) is the

scale factor of the universe. [e.g., McVittie 1965].
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Because

E _ R(t) 1
E. R(t ) l+z (24)1 O

the integral over cosmic emission time can also be expressed

as an integral over received energies:

R(t ) dE
dt = R(t) . (25)

1

This integral is easily done due to the 6-function nature of

P. to give
1

2 562 F. gi n( Fe) R(t )
1 c 1 o

EaQ 4rr E. R(t ) E

where the time tE is the solution of Eq.(24). In the Friedman

dust models one has [e.g. Weinberg 1972]

R(t ) E. E
R(t E ) - H [1-2qo+2qo E (27)
R(tE) E o o E

so that Eq.(26) reads

2 56
I 4rr c H f(t ) Fl-2qo+2q (28)

E 4 E. H E L 0 0 E81 0

Clayton and Silk (1969) evaluated the flux in a simpler form for

the two cases where

R(t) a tl/. (29)

They are the low-density universe (qoa O, y 1 ) and the

Einstein-de Sitter universe (qo = , y = 3/2). In those
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cases Eq.(24) can be explicitly solved for tE and, furthermore,

the factor involving qo simplifies:

2 56
2 F. g. n( Fe)

I c i f[to( E y E Y-1f~t(( ) (30)
6EK 4 r E. H o -E. E.

1 0 1 1

It is straightforward to confirm with Eq. (28) or Eq. (30) that
2

E. 8 F.
. a i c 56E EbFi dE g n( 5 6Fe) (31)
0 E 4rr i

as required by photon conservation.

The spectrum due to each line is characterized by a step

at the rest energy

(6 2Fi c gi n 56 Fe )n( Fe) -f(t ) (32)
EO E E. 4rr E. H o

1 1 0

that is directly proportional to the average rate of nucleo-

synthesis today in the universe. Detection of the series of

correlated rest edges will confirm that nucleosynthesis is

still occurring and measure its present rate f(t ). Each rest

edge is followed at immediately lower energies by identical

redshifted continua, whose shape and extent depend upon the

cosmological model and the history f(t) of galactic nucleosyn-

thesis. It is interesting to note that the ratio f(t )/H is

a ratio of characteristic times: 1/Ho is approximately the age

of the universe and 1/f(t ) would be the time required to
56 0

synthesize X ( Fe) at a constant rate f(t ).
0 56

Some simple profiles for the Co line of 1.24 MeV are

shown in Figure 3. If nucleosynthesis has occurred within

galaxies at a constant rate up to the present time t since it
-1

began at some time t*, then f(t) = (t -t*) between t, and to

and is zero elsewhere. The left half of Figure 3 shows that case
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Figure 3. Differential flux due to a single line (

5
6Co at 1.24 MeV). Models of constant galactic synthesis

of 
5 6

Fe over a period of 7x10
9 

yr are shown on the left, and models' of exponentially decreasing nucleosyn-
thesis are shown on the right. This rather short duration of galactic nucleosynthesis was chosen only forease of comparison, so that it could fit in the age of the Einstein-de Sitter universe with H =75 km/sec/Mpc.
The low density universe is shown as a solid line and the Einstein-de Sitter as a dashed lineo The steady-
state-universe line profile is dotted on the.left figure. The line 10

-
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- 2 
is also shown to indicate the

approximate level of the observed diffuse background. (Clayton and Silk 1969)
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from Clayton and Silk (1969), who took to - t = 7 x 10 yrs so

that it could fit easily within the Einstein-de Sitter universe

based on H = 75 km/sec/Mpc. The right half of Figure 3 shows

this line profile for exponential nucleosynthesis f(t) = A

exp[-X(t-t*)], where A is a normalization constant and X = l/TR

from Eq.(l). The two choices of X shown there give different

relative strengths to present-day nucleosynthesis in comparison

with the initial galactic rates. The rest edges are still

detectable here, but smaller than for the case of constant

nucleosynthesis.

It is worth noting here that these figures are applicable

to Sandage's (1972) value H = 55 km/sec/Mpc if one only in-

creases to - t* by the factor 75/55, giving the more reasonable

to - t* = 9.6 x 10 yr, and if the value of the flux is reduced
2

by the factor (55/75) . The latter comes about because

56 2 -1
n( Fe)2H and f(t)-;H if we require to - t.'*H . It is

clear that the flux at this rest edge may well be comparable to

the isotropic background, whose approximate value is shown for

comparison. The model TR = 4 x 10 yr and AG = 12 x 10 yr used

in estimating the typical supernova yield resembles the curve

labeled X = (2 x 10 9yr)-1 in Figure 3. Its rest edge is the

smallest shown -- about 15 percent of the observed background.

Such small edges would go undetected unless observers design

detectors and use data reduction methods designed to extract

the steps from the continuous background.

The steady-state universe, shown as a dotted line in

Figure 3, affords a somewhat different problem. To maintain

a constant iron density requires a creation rate

C = 3Hn( 56Fe) = constant, (33)
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so the gamma rays are created at the rate gi C. The age dis-
56

tribution of Fe nuclei is no longer given by the galactic

production function f(t), because galaxies of all differing ages

coexist. The density of nuclei having age to - t in the interval

dt is simply

dN(t - t) = 3Hn( 5 6 Fe) e-3H(to-t)dt. (34)

Both results follow directly from the fact that the scale factor

for the proper distance between comoving-coordinate points is

R(t ) H(to H(to-t)
R(t) - e = l+z (35)

where z is the redshift of a photon whose travel time is t - t.
o

Since Eq. (35) is also the ratio of the rest energy E to the
1

received energy E, Eq.(34) is easily rewritten as a distribution

in energy of photons of type i:

dN.(E) = 3in(56 Fe) 2 dE(36)S.E. E.1 1

and the differential flux is, as before,

S2F. dN. (E)
1 c 1_

Et - 4 dE * (37)

The flux is independent of both the Hubble constant and the

details f(t) of galactic production, and the spectrum is pro-
2

portional to E up to the rest edge E.. This spectrum is the
1

dotted one in Figure 3. It is of interest to note that Eq.(32)

for the size of the rest edge gives the correct answer in this
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case also if the present production rate f(to ) is replaced by

3H according to Eq.(33):

(a 2 F . i 3.in( 56Fe)
- i (38)'EaO 'E=E. 4n E.

1 1

In setting this rest edge equal to those of the evolving universe

in Figure 3 we have been somewhat arbitrary, because f(t )/H 2

for the evolving models in the left side of the figure, whereas

the steady state gives the slightly larger value 3. However,
56

the average proper density n( Fe) could also differ slightly

from the value inferred from the solar composition--but not
-1 9

much, because the average galactic age (3H ) -l 6 x 10 yrs is

also approximately the age our Galaxy had when the solar system

formed.

The main point of the steady-state cosmology is that the
2

strong rest edge and the (E/Ei ) spectrum remain even if the

Galactic production function f(t) were strongly peaked in the

past, as in the evolving cosmologies in the right. If the

lines emerge unscattered from the sources, a strict steady-

state universe will have very strong rest edges--like saw

teeth.

Figure 4 illustrates the entire A=56 spectrum for the

Einstein-de Sitter case. Two points need be made: (1) the rest

edges are clearly more prominent in the case of constant galactic
-2

nucleosynthesis than they are in the e -2 exponential case, but

(2) the general shape of the continuum feature produced is quite

similar for the two cases. The Einstein-de Sitter universe re-

quires thirty times more mass than has been observed in galaxies,

but Figure 4 assumes that only the observed galaxies contain
56
Fe. If nonvisible matter has undergone nucleosynthesis

the spectrum normalization would have to be increased. One
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Figure 4. The composite 56Ni- 56Co56Fe gamma-ray

spectrum in a specific Einstein-de Sitter universe. The

age of this universe is ll.8x109 years, and nucleosyn-

thesis in galaxies began at t=2xl09 years, correspond-

ing to z=2.5. The solid line represents an exponential-

ly decreasing rate of nucleosynthesis per galaxy which
-2

is today e-2 of the initial rate, whereas the dashed

line represents a constant rate of nucleosynthesis per

galaxy. The spectrum has series of rest-frequency

edges and redshifted continua. The rest edges, which

are calculated without compton scattering in the source,

are smallest for nucleosynthesis peaked in the early

galactic history. The dotted line, shown for compari-

son, is the background spectrum observed on the Apollo

15 spacecraft by Trombka et al -- the heavy solid dots

being their data points. The number of photons in the

radioactivity background is obviously significant, but

higher-energy-resolution observations will be needed

to extract the presence of detailed structure. Although

the density required for qo=! with H =55 km/sec Mpc is
-30 -3 0

pc=5.9x1 0  gm cm , this figure assumes that only the
56

galaxies, with density p G=028 Pc' contain Fe.

This calculation (Clayton and Ward) is thus a lower

limit to the anticipated gamma-ray density.
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already sees that is cannot be increased very much, and I
56

tentatively conclude that the density of Fe does not exceed

the observed density by more than a factor of two unless the

A=56 lines are trapped in their sources. The fascinating thing

about the Apollo 15 points of Trombka, Metzger, Arnold, Matteson,

Reedy and Peterson (1973) is the way they show a positive curva-

tures near 400 keV

This suggests a multisource spectrum, and

it is quite conceivable that the radioactivity spectrum may be

significant in the over-all shape. Certainly the changes of

second derivative will, if they remain after further experimental

scrutiny, be important keys to the origins of this spectrum.

The radioactivity spectrum may be less visible if the exploding

source remains opaque for several months. Compton scattering as

extensive as that in Figure 2 would removed at least half of the

photons from the rest frequency at the source and redistribute

them at energies of-0.5 MeV or so. If this source function were

employed in Figure 4, the rest edges would be smaller by a

factor of two or so, and the whole high-energy slope would be

diminished in importance. At present no firm conclusion can

be made, because the NaI(Tl) scintillator aboard Apollo 15 had

not the energy resolution to detect structure like that in

Figure 4. Nonetheless, such structure should be detectable.

(e) Discussion

It is within scientific grasp to learn the answers to many

or all of the questions about nucleosynthesis enumerated in the

introduction. What is needed is a gamma-ray telescope with

high energy resolution, moderately good angular resolution, and

long operation times outside the earth's atmosphere while re-

ponsive to ground command. Of primary importance is energy
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resolution of a few percent or better to extract lines from

continua and to detect rest edges in the univer 3al continuum.

Because the rest energies of the gamma rays and their relative

production rates are known from laboratory studies, relatively

sophisticated data analyses can be performed: one could sum the

counting rates just before and just after each rest edge, for

example, and compare the decrement with that at arbitrary energies

in the spectrum. The angular resolution is needed to identify

specific radiating objects (supernovae). As far as I know, the

best type of instrument for accomplishing these two needs would

be one like I described in the NASA x-and-y-Ray Committee Study

of November 1965 -- a honeycomb of parallel holes drilled through

actively collimating CsI or NaI with solid-state (say Li-drifted

Ge) gamma detectors at the bottom of each hole. Operation out-

side the earth's atmosphere is necessary to reduce theemission

background of the earth's atmosphere and its opacity. Ground

command will be necessary for viewing different objects and for

extracting the isotropic component. Last but by no means least,

we need nature's cooperation in presenting us with a new Galactic

supernova, preferably a visible one, although an invisible one

could be immediately recognized by a large increase of the A=56

lines [See Eqs. (7) and (8)]. Good observation of at least one

supernova is needed to measure what fraction of a gamma lines

emerge unscattered from their source, for without this calibration

the interpretation of the universal background will remain insecure,

With a little bit of luck, the entire science of explosive nucleo-

synthesis will gain a firm observational footing from these very

special photons. Like all photons, they tell us that an electro-

magnetic deexcitation occurred; unlike any other photons, they

alone tell us that a new nucleus was just born.
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III. INELASTIC SCATTERING

When particles collide with energies in excess of those

of their nuclear excited states, nuclear excitation is possible

by the process of inelastic scattering. Let us not consider

here the interesting problems of fast particles impinging on

special dense objects like the earth's atmosphere, the moon, or

the sun's outer atmosphere. Gamma rays from all three sources

have been observed, but I will be concerned with radiation from

outside the solar system. I also wish to set aside gamma rays

from the surfaces of stars and collapsed objects, although both

may present some observable sources. By design I will restrict

myself to some remarks concerning the interstellar medium and

its interaction with fast particles--either a general cosmic-

ray flux or special regions of high flux near sources of fast

particles. The point to be made at once is that "fast particles"

rather than "cosmic rays" may be a more appropriate nomenclature,

because the largest cross sections and the largest fluxes may be

found in the region of several MeV.

Let F. be the gamma-ray flux at the earth within a solid
1

angle n due to collisions

A + B - A (E i ) + B

A (E) - A + y(E.). (39)
11

The center-of-mass kinetic energy before the collision is E,

and after the collision is E-E.. Let the cross section for this

process be designated by a (E). In practice one of these
AB

particles will be a nearly stationary constituent of interstellar

or circumstellar plasma, and its number density NA(x,t) is a

function of time and place; the other particle will be regarded
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as the fast one with flux B (x,t) that is also a function of time

and place. Then

S1 -2 i
Fr - r NA (E) a (E)dE dV (40)

*4T A B AB
E. V(C)

where the integral is over center-of-mass energies E>E. and V(Q)1

is the volume of interstellar gas viewed by the solid angle Q.

I will suppress the time dependence, although the arguments are

evaluated at t - r/c if the flux is measured at t. Euclidean

geometry is consistent with the assumption that the only gamma-

ray lines of this type we are likely to see come from the Galaxy.

For an infinitesimal pencil of directions dO, NA(x) will be con-

stant over the volume element dV = r2 ddr so that the differential

flux is

dQ j ... i
dF -I 4 )B (x,E)AB (E)dE dr (41)

E. o
1

and if the position dependence of the fast-particle flux is

ignored, this integral becomes a product of the integrated

number of particles per unit area along the line of sight times

the integral over the energy of the cross section times the flux.

One thing to notice immediately is that there should be

another term involving the product NB 0A(E) in the integrand,

and, if the chemical composition of the gas were identical to

that of the fast particles at fixed velocity, both integrals

would give the same number of gamma rays. In the second case,

however, the energy of the received gamma may be significantly

Doppler shifted if the particles A were moving at significant

fractions of c. (I will not concern myself at all with truly
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relativistic velocities, where pion production dominates gamma-

ray considerations and where, in any case, the fluxes are too

small to produce detectable low-energy gamma rays.) The Doppler

broadening in the second case might make the lines harder to

resolve.

Let us made an order of magnitude estimate in order to de-

fine the ballpark. Imagine a telescope viewing the galactic

disk. Let the solid angle 0 contain interstellar gas equal to pg

percent of the Galactic mass (the total interstellar gas being

about pg = 10() in the Galactic disk. Let pA and p' be the per-

centages of interstellar particles and of fast particles having

identities A and B respectively, so that NA =A )N and

OB =(00 )0. (Throuhout I have chosen to express unknown parameters

in percentages in order that they have expected values nearer

unity in resulting expressions.) Assuming the emissivity of the

disk to be nearly uniform means that the flux is comparable to

the value it would have if the emission within V(n) were all from

the Galactic center, about 10 kpc away. For that case

-11 - - -2 -1F (Galaxy) p (pAP' + pA) 1.8 x 10 0 a (mb)cm s (42)i(PAPB PBPA AB

where 0(>Ei) the total flux above threshold and a(mb) is the

average cross section in units of millibarns. For example if we

consider that the 6.1 MeV radiation from 160 has a proton cross

section of about 100 mb above its threshold (effectively about
-2 -18 MeV), and if the flux above 8 MeV is o(>8) ; 50 cm sec , a

not unreasonable extrapolation from observations above 30 MeV.

then with p16 .07, p = 990, p 90, p = .3 [Cameron (1968);

Shapiro and Silberberg (1970)] gives

Gal 3 x 10-6 -2 -1F 1 6 (Galaxy) , 3 x 10 cm sec
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if the gas in V(n) is pg = 1% of the Galactic mass. This
41corresponds to a total production of about 10 gamma rays per

second from the entire Galactic gas, in rough agreement with

the estimate of Fowler, Reeves and Silk (1970), and a flux of
-5 -2 -1

about 3 x 10 cm sec with an omnidirectional counter. I

do not want to argue this as the best calculation of the emissivity

of the Galactic disk. My point is that line fluxes of order
-5 -2 -1 16*

10 cm sec will be expected from 0 , and that this detection

will be only marginally possible. That is, this prospect lies

near an uncertain edge of detectability.

What basic features of the estimate could be plausibly altered

to obtain a larger gamma-ray flux at the earth? One idea would

be a discrete source nearby. However, one readily calculates

that if a mass mM of gas concentrated at a distance d(pc) is

irradiated, the flux of gammas at earth is

0.8x10 12
F. (source) = 2 mF(mb)7(pA' + BPA') (43)

d(pc)2  A

so that for d = m = 1 the 160 gamma-ray flux, for example, would
-9 -

be Fl6(discrete) = 3 x 10-9  (>8 MeV). Thus the flux from a

discrete source can hardly be much greater than that of the disk

as a whole, unless the fast particle flux ¢ is very much greater
5 -2 -1

(say ¢ > 10 cm s ) than in the general cosmic radiation. This

might occur for a short while following a supernova explosion,

or it might occur for long times around a rapidly rotating

collapsed object.

Another attractive idea is that fast-particle flux ¢(E)

could be a very steep function of energy. The solar modulation

is thought to be (Goldstein, Fisk and Ramaty 1970) so severe for

E < 30 MeV/nucleon that measurements at earth give little insight
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into the general interstellar flux. If we should be so fortunate
-n

that O(E) a E with n>2, a great deal of special information can

be extracted from sources. The high fluxes will give observable

counting rates and the steep energy dependence will produce

informative threshold-dependent features. We may perhaps even

expect this near the sources, because Braddy, Chan and Price

(1973) have found that big solar flares produce a very steep

spectrum having n ; 3.7 with preferential acceleration of heavy

ions. Of course solar flares are not the origins of cosmic rays,

but let us make do with what we have and suppose that, like flares,

the acceleration mechanisms for cosmic rays also produce a steep

low-energy spectrum. If it is as steep as n=2, the nuclei having

low excitation thresholds can be excited more strongly than more

abundant nuclei having higher excitation thresholds. This point

is illustrated in Figure 5, which shows the relative abundances

of cosmic-ray nuclei (assuming terrestrial isotope ratios) as a

function of the excitation energy E. = E(A*) of their first ex-
1

cited states. There is a general positive slope of approximately
+1

E. in these abundances, which reflects only the fact that the
1

most abundant nuclei tend to be the most stable, and those in

turn tend to have the largest excitation energies.

First consider an example of how gamma-ray astronomy could

measure the exponent n in the fast-particle spectrum. The 14N

nucleus has excited states at 2.31 and 3.94 MeV with "effective

thresholds" of about 3.3 and 4.9 MeV (to allow the outgoing proton

at least 1 MeV to beat the Coulomb barrier). The excitation of

the 3.95 MeV level results (96%0) in a cascade of 1.6 and 2.3 MeV

gamma rays, whereas the excitation of the 2.31 MeV level results

only in the 2.3 MeV gamma ray. Thus the relative gamma-ray
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fluxes should be

. 3-n 2.31
F2 3  J 3 E PN (E)dE +1 (44)
F -n 3.95
1.6 4.9 E p (E)dE

I can foresee a need for tabulations of nuclear cross sections

of this type; however, if we only assume for simplicity that

the ratio of these two averaged cross sections is near unity,
then the n dependence is proportional to the ratio of fast-

particle fluxes :

2.3 /4.9 n-1a 2 4/ + 1 = 3.8 for n = 3.5,
1.6

whereas the corresponding ratio would be near two if there were

a deficiency rather than an excess of MeV particles. One could
12 16also compare the first excited-state lines of C and 0, but

then the abundance ratio in the source would be an unknown. If

many different lines of many different species can be observed,

an interesting picture of the abundances and energy spectrum

could be assembled. A related type of problem was extensively

discussed by Lingenfelter and Ramaty (1967) for the case of

solar flares, and many of their conclusions pass directly to

extra-solar gamma-ray astronomy. Now that some of these solar-

flare gamma rays have been seen by OSO-7, we may expect further

clarifications on prospects for the future of Galactic astronomy.

For fast particles more energetic than 10 MeV, the most prominent

astronomical lines should be the pair annihilation line, the

2.23 MeV radiative neutron capture by hydrogen, and the excited

states of C,N,O and Ne nuclei. Fowler, Reeves and Silk (1970)

emphasized for these particles, however, that the gamma-ray flux
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is limited by the requirement that the accompanying spallation

reactions not overproduce Li, Be and B abundances. They find
12 16that the rate of production of C and 0 gamma rays is less

-26 -1
than 10 sec per interstellar H atom. This limit is an

average over time and place, however, and could be greatly exceeded

in limited regions for limited times.

Figure 5 shows those nuclei that will be most exciteable

by low-energy fast particles, so let us turn our attention to

the possibility that large fluxes of particles with E < 5 MeV

may be common. In addition to the solar-flare observations to

motivate this hypothesis, we have4fact that if the HI regions are

heated by fast particles, they must surely lie in the MeV region.
-2

If the fast-particle spectrum is steeper than E- 2 , the nuclei

with low excited states are excited more frequently than the

more abundant nuclei. Of all these, 7Li is anomalous in that its

cosmic-ray abundance is very much greater than the general line

through Figure 5. In a steep fast-particle spectrum, the 478
7 *

keV line of Li should be the most prominent if the fast particles

have the relative abundances of the cosmic rays. This peculiar

fact was used by Fishman and Clayton (1972) in their attempt to

account for the spectral feature observed toward the Galactic

center by Johnson, Harnden and Haymes (1972). They point out
7 7 *

that a 432 KeV gamma ray due to Li(p,n) Be (432) should accom-

pany the main 7Li radiation with about 1/3 its intensity. Their

fit to the data of Johnson et al is shown in Figure 6. The

computed solid curve is a simple power-law continuum plus the

7Li doublet feature at an intensity comparable to the observed

counting rate. The fit is basically quite good, so the explanation

could be correct. Fishman and Clayton used p = 2% and p' 0.080%
g Li
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Figure 5

Relative abundances of cosmic-ray nuclei (Shapiro and

Silberberg 1970) plotted as a function of the energy of their

first excitation level. Terrestrial isotope ratios have been

assumed. The energy range of the line feature observed from

the Galactic center region (Johnson et al 1972) is indicated.

No observations have been made above 0.93 MeV. From Fishman

and Clayton (1972).

Figure 6

The curve shows the shape of the 7Li -inelastic-scattering

feature superimposed on a smooth power-law continuum (Fishman

and Clayton 1972). Thr profile was computed for an energy

resolution equal to that of the detector used by Johnson et al.

Because of the limited resolution, the line at 432 keV due to

7Li (p,n) 7Be* is not physically separated from the line at

478 keV due to 7Li (p,p') 7Li* which is three times stronger.

The histograms are the data of Johnson et al (1972) with their

energy channels summed in groups of three adjacent channels to

reduce statistical fluctuations. The consistency of their

feature with the one proposed by Fishman and Clayton is

evident.
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in Eq.(42) to conclude that if the radiation was from this much
4 -2 -1gas toward the Galactic center, one gets 0 m 5 x 10 cm sec

between about 2 and 10 MeV/nucleon. This is a much larger flux

than one is accustomed to think of in cosmic rays, but it is
-3.5not out of line with E spectra like those of a solar flare;

with n = 3.5 one has 0(>2) ; 900 0(>30). The large energy density
-3

of over 100 eV cm would create dynamic instabilities were it

a Galacticwide phenomenon, however, so it must exist instead

in bottles of high-flux regions. Nonetheless, our calculation

requires the amount of irradiated gas to be large to obtain the

observed flux, so there are strong astrophysical problems here.

Another problem is that the high 7Li abundance is usually
assumed to be spallogenic from high-energy cosmic rays, so that

large low-energy fluxes of this nucleus might not be expected

from that point of view. My philosophy is that observational

gamma-ray astronomy is quite capable of teaching us the truth

in these matters, so elaborate models for or against this

particular explanation may not be appropriate at present. We

also need much better evidence of the cosmic-ray flux at the solar

system, because the Goldstein, Fisk and Ramaty (1970) calculations

show that the particles at earth's orbit having 30 MeV/nucleon

are three to four orders of magnitude less abundant than their

50-100 MeV progenitors at the boundaries of the solar system.

Perhaps Pioneer 10 will give us badly needed facts on this

modulation problem.

This work was partially supported by the National Science

Foundation GP-18335.
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ABSTRACT

An analysis is made of the interactions of very high energy cosmic

ray protons with the relict radiation in extragalactic space. 
Two

situations are examined: gamma rays derived from o -mesons produced

in collisions in a non-evolutionary situation and gamma rays from

electron pairs produced at early epochs. It is shown that the ultra

high energy y-rays (Ey > 1019eV) could conceivably be of high enough

intensity to be detected. The flux of y-rays from the second process

(E < 109eV) is not far from the diffuse background that has been reported.
Y
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§i. Introduction

The problem of the origin of the cosmic radiation is well known.

Although there are many potential sources in the galaxy: novae, super-

novae, pulsars, the Galactic nucleus, etc., there is great difficulty

in explaining the observed isotropy of the radiation above 1017eV where

the galactic magnetic field is not strong enough to randomise the

particle directions and considerable anisotropies should result. The

suggestion of an extragalactic origin for all the radiation demands a

rather high energy density of this component throughout the Universe

(% leV cm- 3) but if only particles above 1015eV or so come predominantly

from outside the Galaxy this difficulty disappears.

If these very energetic primaries are indeed of extragalactic origin,

their interaction with the radiations in space, principally the relict

radiation (Penzias and Wilson, 1965, and later papers), becomes a process

of importance. The protons will lose energy by way of interaction with

this radiation and produce, successively as the energy is increased, e e

pairs and pions. In turn, the energy loss would be expected to show up

as an increase in slope of the energy spectrum of protons recorded at the

earth.

There is the well known increase of slope at \ 3 x 1015eV and it is

conceivable that this arises from just such interactions, principally

ee production, at early stages of the evolution of the Universe when

the relict radiation was at a higher temperature than its present value

of 2.7K (Hillas, 1968, Strong et al., 1973). The latter authors have

calculated the flux of y-rays expected to result from such interactions

and, although they are hardly of 'ultra-high' energy, they will be con-

sidered briefly later because their origin is similar to that of the much

higher y-rays which are the main subject of this work.
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If cosmic ray protons did not start to be produced until comparatively

late stages in the evolution of the Universe, when the temperature of the

relict radiation was close to its present value, e e production would

cause a reduction of primary proton intensity by a factor v 3 above

3.10 18 eV and pion production would cause a reduction starting at

5.1019eV and reaching a factor v 100 above r 2.1020eV, Now such a reduc-

tion does not appear to have been detected experimentally (although at the

energies in question the numbers of events detected, extensive air showers,

is small and errors of energy determination are not negligible). A

possible way out of the problem is to assume that the production spectrum

of primary protons above 1019eV is flatter than that at lower energies so

that after attenuation the spectrum at the earth has roughly the same slope

as that below 10 19eV. Although this idea is perhaps improbable, it is by

no means impossible. Clearly in this case there will be significant energy

going into pions and electrons, and eventually y-rays and these will be, in

principle, detectable. The details to be described in the following

sections are taken largely from the work of Wdowczyk et al. (1971, 1972,

referred to as I).

92. Interaction of Protons with the Relict Radiation.

2.1 The attenuation length for photomeson production

The interaction process has been considered by a number of authors,

starting with Greisen (1966) and Zatsepin and Kuzmin (1966) and an accurate

analysis has been given by Stecker (1968). This author has summarised

experimental data on the total photomeson production cross section and

inelasticity for high energy protons in the relict radiation as a function

of y-ray energy in the proton rest system and used the data in the derivat-

-1
ion of .a (xa = (Kpnyo)eff where Kp is the inelasticity of the interaction



n is the photon density and a the meson production cross section. The
Y

values of Xa derived in this way are given in Figure 1. Kuzmin anda

Zatsepin (1967) and Adcock (1970, private communication) have derived

values of the interaction length, Xi, as a function of E and these
1 p

values are close to what would be expected from Stecker's results.

2.2 Energy spectrum of protons

Wdowczyk et al. (1972) considered two limiting forms for the energy

spectrum of protons at the earth, as shown in Figure 2. The higher

intensities (A) come from the work of Linsley et alo (1963) and the

lower spectrum (B) is that due to Andrews et al. (1971). Although the

latter seems more probable, results for both will be given so that inter-

polation (or extrapolation) may be made if results are needed for some

other spectrum.

2.3 Energy spectrum of y-rays on production

In I, use was made of Stecker's data to calculate the production

spectra of i o-mesons, and in turn that Of y-rays, with the results shown

in Figure 2. An important datum is the total energy going into y-rays:

for A this is

-25 -3 -1 o
7 x 10 eV cm s from 7 -mesons, together with

-25 -3 -1 + -
4 x 1025eV cm s from e e pairs.

For spectrum B the corresponding figures are

-26 -3 -1 o
6 x 10 eV cm s from 0-mesons and

-25 -3 -1 + -
s 4 x 10 eV cm s from e e pairs (the spectra A and B are

very similar in the energy region where pair production is important).

With spectrum A and assuming a residence time for photons in the

Universe of T = 13 x 10 9y = 4 x 1017s, the integrated y-ray intensity is
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2 -2 -1 -1 -7 -3.
7 x 10 eV cm s sr and the energy density is 3 x 10 eV cm

This energy density can be compared with that in the proton spectrum

19 -10 -3
at the earth above 5 x 10 eV of r, 3 x 10 eV cm . The large disparity

is because of the fact mentioned in. § that the proton spectrum oi

production must be much flatter than that observed. Essentially, the

25
detected protons come from within one attenuation length (r 3 x 10 cm

at a mean energy of 3 x 1020eV) whereas y-rays come from the whole of

the Universe (% 1028cm),

The production spectra in Figure 2 are close to those given by Stecker

(1973, private communication) for the same alternative proton spectra.

§3. Propagation of y-rays through the Universe

3.1 Extragalactic radiation fields

Summaries of the radiation fields and the corresponding interaction

mean free paths for y-y collisions have been given by a number of authors,

notably Gould and Schreder (1967a, b), Stecker (1971) and I. There is,

understandably, agreement for the relict radiation but a small disparity

for starlight and IIR. and a large disparity for the radio background. A

comparison is made in Figure 1 between the results of I - full line, and

that of Stecker (1971 - an updating of Gould and Schreder, 19674, b) -

dotted line. Of importance for the propagation of y-rays above 10 20eV is

the difference in the radio background and this needs to be considered.

The problem of measuring the isotropic component of the radio background

at the earth is severe and experimental differences are rather great. The

authors of I used the measurements of Clark et al. (1970), which show a

fall off in intensity at photon energies below 10-8eV, and insofar as

these measurements are later than those used by the other authors their

analysis will be used here. It is interesting to note that if the shorter
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interaction lengths are valid for E > 1020eV then the result will be a

reduction in the intensity of such y-rays at the earth but an increase in

intensity at energies just below this value.

3.2 The interaction process

The generated high energy photons will interact with the photons of

the various radiation fields to produce electron pairs, y + y - e + e .

Muon pairs can also be produced if the energy is high enough (Ey > 10 9e

for relict radiation) and the mean free paths for muon pair and electron

pair production eventually become equal; however, in the energy region

where a significant effect would occur, the radio background takes over.

The interaction process has been examined in some detail by

Bonometto and Lucchin (1971), Allcock and Wdowczyk (1972) and by Wdowczyk

et al. (1972). The authors have pointed out the important fact that at

high photon energies the angular distribution of che electrons peaks in

the forward and backward directions so that in the laboratory system one

of the electrons takes an increasingly large fraction of the energetic

photon energy. In the absence of an extragalactic magnetic field.of magni-

tude above 10-11 gauss (see I), the electrons produced will collide with

the relict photons and produce further energetic photons by the inverse

Compton effect and in this way a y-ray cascade will be built up.

3.3 First generation y-spectrum

Whether or not magnetic fields are present, the y-ray spectrum of

Figure 2 will be generated and a first generation spectrum Ii (Ey) =
1
4 W(E ) X(E ) will be formed. This spectrum has been calculated in I

for proton spectra A and B with the result shown in Figure 3.

3.4 Cascading in the absence of galactic magnetic fields

The cascading problem is one of some complexity and the only calculat-

ions reported to date appear to be those in I. An order of magnitude
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estimate of the upper limit to the intensity at low energies (where most

of the energy will eventually lie) can be obtained from energy conser-

vation. For example, if starlight were to be disregarded (i.e. X. for
1

starlight > 1028cm) then very roughly the intensity would have an

average value below 10 14eV (Figure 1) of I (< 10 14eV) given by
c

1014eV

2 -2 -1 -1SEyc (E )d E % 7 x 10 eV cm s sr for proton

E
o

spectrum A; (where E << 10 eV) i.e.

14 -25 -2 -1 -1 -1
Ic(E Y <10 eV) 10 cm s sr eV

Similarly, in the presence of considerable starlight but no radiation

causing attenuation below 1011eV,we would expect

S(Ey < 1011e) ' 10-19 -2 -1 -1 -1

again for proton spectrum A.

The diffusion equations were solved in I giving the energy spectra

shown in Figures 4 and 5. It can be seen that the intensities at low energies

are not inconsistent with what would be expected from the remarks in the

previous paragraph.

3.5 qascading in the presence of galactic magnetic fields

The presence of significant fields causes the electrons 'produced in

y-y collisions to lose energy by synchrotron radiation and thus give rise

to 'low' energy y's rather than to transfer most of their energy to a

single photon by I.C.E; The problem was considered in I and results were
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given for what might be a reasonable field: <B > = 10? gauss. Not

surprisingly, perhaps, the synchrotron spectrum so derived is rather

similar to that from cascading, below 1015eV. However, a note of caution

is necessary, because of the effect of the field on the proton spectrum.

It is possible to envisage a situation where the proton spectrum is higher

elsewhere and the y/p ratio at the earth would be correspondingly higher,

§4. Summary of Predictions concerning y-rays above 10 12eV

The intensities of y-rays shown in Figures 4 and 5 (for the case of

<B > 10 - 11 gauss) have been used to give the y/p ratios shown in Figure

6.

It will be noticed that the ratios are approaching measurable frac-

tions at energies above 101 9eV. Of particular interest is the peak in

the region of 2 x 1019ev whiFh comes from che effect of the transition

from domination by relict radiation to that by the radio background at

this energy (Figure 1). An approximate analysis was made in I of the

upper limit that can be set on this ratio from studies of extensive air

showers (y-initiated showers would be poor in muons compared with proton-

initiated showers). It can be seen that so far the experimental limit is

significantly higher than the maximum predicted ratio. However, there

are sufficient uncertainties in our knowledge of extragalactic parameters

to make it possible that detectable fluxes of very energetic y's do exist

and it is urged that systematic searches be made. One point that should

be stressed in this connexion is the possibility of a non-uniform radio

background; this could produce a transition effect which would concentrate

y-ray energy in a particular region to an even greater extent than in the

present case and give rise to a much higher ratio.



§5. y-rays in an evolving Universe

As remarked in the Introduction there is the possibility that the

kink in the proton spectrum at 3 x 10 oeV is connected with electron

pair-production on the relict radiation at early epochs. The y-rays

expected from these interactions may allow constraints to be put on

models in which the primary spectrum above 1014eV is of extragalactic

origin and this topic therefore has relevance to the ultra high energy

y-region.

Strong et al. (1973a, b) have examined the problem in detail and

their derived y-spectrum at the earth is given in Figure 7. As will

be appreciated, although the total energy in the spectrum will be con-

5 -2 -1 -1
stant (it is " 1.7 x 10 eV cm s sr ) the spectral shape will

depend on the energy density of extragalactic starlight. The y-ray

spectra in Figure 7 correspond to different assumptions about the

variation of starlight density with epcch.

The experimental situation is not clear. There appear to be a

number of intensities below the expected spectra and if these are

correct then the suggested origin of the proton spectrum kink is not

correct (although this does not preclude the very energetic protons of

this energy being of extragalactic -origin). However, the recent measure-

ments of Mayer-Hasselwander et al. (1972) are in good agreement with the

prediction.

A firm conclusion cannot be made at this stage, therefore, although

with new measurements being made at the present time, this problem, at

least, should be solved rather soon.
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CAPTIONS TO FIGURES

Figure 1 Interaction length against photon energy for collisions of

energetic photons with photons of the various photon fields

(e+e production only). The full lines represent the

calculations of Wdowczyk et al. (1972) and the dotted lines

those of Stecker (1971).

Also shown (top right hand corner) is the attenuation length

for protons in the relict radiation from the work of Stecker

(1968).

Figure 2 Alternative primary proton spectra jA and jB and the corres-

ponding y production spectra, W(E ), from I.

Figure 3 First generation production spectra from I. If the mean

-10
extragalaLtic magnetic field exceeds 10 gauss or so,

cascading will be inhibited and these will be the spectra of

y-rays above 10 18eV.

Figure 4 y-ray spectra over the whole energy range, from I. The

diffuse X-ray spectra summarised by Ipavich and Lenchek

(1970) are also shown, as is primary proton spectrum A.

Figure 5 y-ray spectrum for primary proton spectrum B, from I.

(approximate - relaxed from Figure 4).

Figure 6 y/p ratio from reference I.



Figure 7 Comparison of observed, and predicted, isotropic flux of

y-rays. The predicted intensities are from the work of

Strong et al. (1973), with (1) representing the more

probable situation.

Key to observational points:-

OSO-III Clark et al. (1971)

COSMOS - 208 Bratolubova-Tsulukidze et al. (1970)

-PROTON - 2 ibid

--e- COSMOS - 163 Golenetskii et al. (1971)

--I ERS - 18 Vette et al. (1970)

Mayer-Hasselwander et al. (1972)

_ - Daniel et al. (1972).
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Antimatter is quite a relevant subject for a meeting dealing

with cosmic gamma rays since annihilation is an important potential

source of hard photons. Therefore I am glad to have thifoccasion to

report upon some recent work concerning the possible existence of 
anti-

matter on a large scale.

The starting point of these investigations was an attempt to

understand the origin of matter as being essentially analogous to the

origin of the background thermal radiation. This background radiation

is probably a remnant of a prior situation where the Universe 
was hot

and space was much more compact than it is now. It was noticed long

ago(1)(2) that, according to general relativity, an isotropic 
Universe

had to pass through conditions where the temperature at early times

was very high (this is the hot big bang cosmology). When the tempera-

ture was somewhat higher than 100 MeV, thermal radiation contained all

kinds of elementary particles including among others nucleons and anti-

nucleons. It is therefore tempting to wonder whether matter is a rem-

nant of these particles. Preliminary investigations of this question

showed however that a sufficiently efficient separation could not come

from statistical fluctuations 
(3-4) More precisely, if we introduce

the basic parameter = N/E which is invariant under expansion

(where N is the present particle density of matter and Ny the den-

sity of thermal photons), one finds that statistical fluctuations give

(ref. 4)

S 10 - 1 8

whereas the observed value is

S= 108 to 10 10 (1)-
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Therefore some mechanism of separation between matter and antimatter,

more efficient than mere fluctuations, had to be found.

A few years ago, it was noticed that nucleon-antinucleon inter-

actions at intermediate energy (less than 1 GeV) could produce such a

(5)
separation . The basic idea is the following : According to the meso-

nic theory of nuclear forces (6), it turns out that the S-wave scattering

of nucleons and antinucleons is repulsive, i.e. the scattering lengths

are positive. The same result is also found from a phenomenological

analysis of nucleon-antinucleon interactions( . This important feature

can in principle be checked experimentally by measuring with enough pre-

cision the energy of X rays emitted by the protonium (p-p) atom(8) and

this experiment is now under way at CERN(9 ) . If this effective low-

energy repulsion between nucleons and antinucleons turns out to be cor-

rect, it could in principle induce a separation between nucleons and

antinucleons among the particles constituting thermal radiation at high

temperatures.

This hypothesis has been analyzed theoretically, by using a

variety of different models(5 '10 - 13), with the following conclusion :

Separation could indeed be the result of a phase separation occurring

above a critical temperature which is of the order of 300 MeV. Some

approximations had to be made in all of these models so that this con-

clusion can only be considered as tentative. I shall not deal indetail

with this question to-day.

A detailed study of the Universe evolution when the temperature

drops from 300 MeV to 30 keV has been performed recently ( 14 ) with the

following results s

- The parameter I is essentially stabilized after a period
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of intense annihilation at T = 1 MeV at the value

S 10- 9  (2)

(only a lower limit could be obtained).

- The system of matter and antimatter constitutes an emulsion

(i.e. a three-dimensional maze). The size of such an emulsion can be

characterized by the ratio L between a large volume V and the area

of the matter-antimatter boundary S enclosed in this volume

L = < > (3)
S

L is equal to 104 .5 cm when T = 1 HeV and a volume L3 contains at

13
that time a mass of matter of the order of 10 g.

- Neutrons are lost by annihilation around 1 MeV so that there

is no helium formation at this stage.

Here again, I shall not deal with the details of this analysis.

Coalescence

I come now to the first subject of this talk which is to show

how annihilation along the matter-antimatter boundary can induce import-

ant fluid motions by the effect of which the emulsion size L will grow

tremendously during the radiative period. This effect has been called

(15-16)
coalescence

First, let me stress that this effect is relevant for any

antimatter model of the Universe. Even if the separation effect des-

cribed above were but a theoretician's dream, coalescence would still

be the essential feature of a model where matter and antimatter would

be given in separate regions in the initial conditions at time zero
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or any other conceivable model.

This investigation has been carried out by Aldrovandi, Caser,

Puget and Omnbs (to be published).

The basic idea is the following : along the matter-antimatter

boundary, annihilation produces high-energy particles : photons, elec-

trons and positrons. These particles, together with secondary particles

which they put into motion by collisions, carry their momentum to the

fluid which is made of matter (or antimatter) and radiation over some

distance X . Let us consider the case where the boundary has a curva-

ture radius R and X << R . Since as many particles are generated by

annihilation which are going towards matter or towards antimatter, the

pressure they exert on both sides of the boundary is inversely propor-

tional to the area of the effective surface where they are stopped.

These areas are proportional to (R + X)2 and (R - X)2 so that a dis-

continuity pressure [p] appears along the boundary :

[p] =2 p (4)
aR

where pa is the annihilation pressure carried by the high-energy par-

ticles.

Formula (4) is of a well-known type : it is essentially the

Laplace-Kelvin formula which gives the discontinuity pressure associated

with a surface tension with coefficient

S= 2 pa X (5)

so that we expect it to reduce the boundary area, i.e., according to

Eq. (3), to increase L . This is coalescence.

Perhaps it should be mentioned at this stage that the amount

of matter or antimatter connected within the emulsion is infinite
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despite the finite value of L (i.e. you can go to infinity by staying

within the maze)(18). As a result, coalescence is but an unfolding of

the boundary.

The theory of coalescence

The details of the analysis look a bit different when the tem-

perature is respectively larger or smaller than 100 eV because in the

first case high-energy photons have a small mean free path (because

of the reaction Y + thermal photon -* e e ). Below T = 100 eV, this

mean free path becomes larger than L so that primary photons (due to

TO's annihilation) do not contribute to coalescence. I shall restrict

myself to this last case.

In order to treat quantitatively the coalescence effect, one

performs an analysis of the transfer and thermalization of particles.

High-energy particles as well as thermal photons and matter electrons

are described by a set of Boltzmann equations.

Primary high-energy electrons (generated by T p- e-)

first give their momentum to thermal photons by Compton scattering.

Thereby they give rise to X-rays which carry the momentum. These X rays

travel along a distance X, = (N a )-I and give all their momentum to

some electrons by Compton scattering. After this first collision they

travel a distance much longer than L before being thermalized so that

their energy is homogeneously distributed over the emulsion and does

not affect the motion of the fluid. The second-generation electrons

transfer their momentum, partly to thermal photons through Compton col-

lisions (say a fraction § of this momentum) and partly to the matter

plasma by Coulomb collisions (i.e. afraction 1 - ).
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It is a somewhat trivial but tedious exercise to compute the

particles spectra and to write the Boltzmann equations which describe

these processes. Once we have these Boltzmann equations, we can write

hydrodynamical equations by taking as usual the first few moments of

the particles distributions. For the plasma we get an equation of mo-

tion which is

- v P
dv Jm 4

m dt (1- )- PM (6)

where pm is the plasma mass density. Jc is the momentum density of

X rays. P is the density of momentum of thermal photons so that the

third term in the r.h.s. represents the momentum given by radiation to

the plasma. The second term represents the inverse effect : The plasma

transfers its momentum to photons within a time of drag D . One has

PD
WO/C = 1 - o '0 (7)So/c D .

The last term in Eq. (6) represents the effect of the plasma pressure

which is in general negligible except near the boundary where annihil-

ation creates a loss in particles.

The equations for thermal photons need not be written here

because, even when they are written in a form involving hydrodynamical

motion plus diffusion, they are still ugly. Let us note only that for

distances larger than X0  (the thermal photons mean free path), the

system plasma + radiation behaves like a uniquefluid obeying the equation

of motion :

dV - E J)] (8)
dt 3 A 0  3 'Here E is the energy density .of thermal radiation (E/3 is the pressure)

Here E is the energy density of thermal radiation (E/3 is the pressure)
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and IV is the viscosity coefficient

8 XoE(9)

=1V 27 c-

Eq. (8) must be supplemented by an equation for the energy transfer

which is

2E -4

+ V (Jc - D VE + 3 E V) = 0. (10)

These equations of motion must be completed by a boundary condition

which gives the pressure discontinuity across the boundary. The basic

idea has already been given and the passage from kinetic equations to

discontinuity follows the lines provided by the kinetic theory of sur-

(19)
face tension . One gets

1 4 J(o) X, (cr1)
3 R R

The annihilation rate

The annihilation pressure pa or the momentum density c J(O)

are determined by the rate of annihilation at the boundary. To compute

it, one can use Eq. (6). Essentially what happens is the following :

annihilation creates a dip in the plasma density which tends to be filled

under the effect of the plasma pressure gradient V pm while the corres-

ponding flow of matter is slowed down by the drag of plasma against

radiation. This gives

J(O) - N [4 _m m c . (12)
P P

As a result, it is found that only a small fraction of matter

(4 10- 2 ) is annihilated during the coalescence period so that I does
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not decrease appreciably.

The rate of coalescence

Given the hydrodynamical equations together with the boundary

condition (11), one can compute the rate of change of L with time. In

fact, the extreme geometrical complexity of the emulsion can be turned

into advantage by averaging the equations over a large volume V . This

leads to a simple equation for the variation of L

L (t) L 2  
(13)

which can be explicitly solved, taking into account the rate of change

of o and p with time which is due to expansion. The result is again

quite simple, namely

3 16 a 2
L = t. (14)

5 P

It is found therefore that L .increases with time, which is coalescence.

For numerical purposes, one can compute.the mass M contained

within a typical volume V of the emulsion. We have chosen for V the

average volume which is seen from an interior point, which turns out to

be given by

V = 8TL 3  (15)

so that

M = p . (16)

For T = 30000K, t = 1013 sec (the conventional end of the

radiative period), one gets

M 1 10 g (17)
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i.e. a galactic mass.

The size of inhomogeneities. Galaxy formation.

We have found that coalescence generates quite naturally inho-

mogeneities of matter and antimatter which can be at the origin of

galaxies.

In fact, things are not that simple : Because of annihilation,

matter is kept ionized in the symmetric Universe a much longer time than

in the conventional hot big bang model.Jso that coalescence can still go

on during this long recombination period and generate much higher masses.

Moreover drag becomes less effective, which tends to increase the rate of

coalescence. Furthermore the viscosity becomes much smaller so that tur-

bulence can be generated.

The study of this long recombination period is still incomplete.

(20)
I believe Puget and Stecker will say more about it in this meeting

The masses of matter will be larger than before, i.e. rather in the range

of mass of clusters and matter will have a turbulent motion (i.e. the kind

(21)
of situation first envisioned by Ozernoy (2 1)  The main difficulty ordi-

narily found with turbulence (i.e. its dissipation at the end of the

radiative period) (2 2 ) is much reduced here since turbulence would be gene-

rated by the coalescence motion itself.

Antimatter and gamma rays

Coming back to the subject of this meeting, it is interesting

to consider the consequences of this model as far as gamma ray detection

is concerned. For the sake of' argument, we shall consider the Puget-
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Stecker model where whole clusters are made of only one type of matter.

These clusters are born from the largest eddies generated by coalescence.

In such a case(20,23) annihilation on the boundaries of clusters

is too weak to be detectable at the present level. Apparently, the only

detectable gamma rays come from early annihilation and could be seen in

(24)
the isotropic background around 1 MeV after being red-shifted (  . This

effect will be described in a communication by Stecker.

What is the evidence for antimatter ?

Except for the 1 MeV bump in the X-ray background, the present

model has behaved somewhat like a hat from which a rabbit was drawn: The

correct amount of matter in the Universe has been computed, Puget and

Stecker claim that the model gives the right kind of turbulence (i.e.

the right size for the largest eddies and the right velocities) to agree

with the parameters of clusters and galaxies (i.e. their mass and angular

momentum), so that it gives exactly those cosmological parameters which

up to now had been hidden in the initial conditions. Furthermore, the

model has also shown a remarkable knack for embodying past objections(24)

and using them for progress : the hat is still being brushed but the

rabbit is well alive(14-16)

However, one feels quite frustrated to find how difficult it is

to show experimentally the existence of antimatter.

I am now going to describe briefly one conceivable type of con-

sequence. It concerns a possible mechanism for the activity of quasars

and Seyfert galaxies which is yet far from being properly analyzed. In

fact, I only mention it here because of its possible relevance to gamma.

ray astronomy and my excuse for releasing it too early will be the



occasion provided by this meeting.

An oecumenic model of quasars

Many models of quasars have already been proposed. Let us

recall a few of them (2 5 -28)

- Quasars have been tentatively identified with supermassive

stars(29 30 ) . The main difficulty for this theory comes from the star

temperature which is too low for nuclear energy to be produced efficiently.

One must therefore appeal to rotational energy, but this raises difficult

problems of conversion
(3 1- 3 5 )

- A non relativistically rotating supermassive star tends to

collapse rapidly. This has led to a variety of models for quasars where

(31-35)
some stabilization is proviced by rotation (3 1- 35 ) , turbulence or magnetic

fields(36.37) These last two agents are good stabilizers, but turbu-

lence should be continuously generated by a process which has not yet

been found, up to my knowledge.

- Several models of quasars identify them with star clusters
(38 -42)

For our purpose, the basic aspect of this class of models is the import-

ance it lays on collisions.

- One has suggested antimatter as an efficient source of energy

(43-45)
for quasars (  . Here the difficulty is to propose a specific struc-

ture for the matter-antimatter system (4 6- 4 7 ). One must also be aware of

the limitations imposed to annihilation by the observation of high-energy

gamma rays(48p49)

I shall briefly describe here another model of quasars which

has been suggested by the matter-antimatter symmetric cosmology. Because

it reconciles many features of already existing proposals, it might be
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called an oecumenic model. A convenient consequence of this character

is that most relevant calculations have already been done in the lite-

rature.

Let us now state the model : A supermassive star E made of

antimatter is located within the nucleus of a matter galaxy. Energy is

generated by the annihilation of accreting matter and impinging stars.
bemper"tCureI

Heat being thus produced in a stochastic manner, large differences are

produced between the regions where annihilation is taking place and the

average temperature. Turbulent convection is therefore continuously

generated. On the other hand high magnetic fields are expected.

There are reasons derived from our cosmological model to ex-

pect the occurrence of such a peculiar object. It is conceivable (albeit

not yet quite clear nor necessary) that, by effect of the coalescence

motions, some amount of antimatter may be trapped within matter. The

general characteristics of coalescence as described above shows that the

mass of this inclusion cannot be too small as compared to a galactic

mass, say M ' 10 M . The contraction of such a mass of antimatter

will take place after recombination as a consequence of annihilation

pressure (i.e. the high-energy electrons and positrons produced by an-

nihilation communicate their momentum to matter and antimatter if there

is a magnetic field. Such a strong boundary pressure can induce con-

traction (50)). In this way we expect that a supermassive star such as E

could be produced.

It may be that E has a hard early life and there are a few

unsolved problems concerning this period : it is necessary that stabi-

lization by turbulence or magnetic fields occur very soon after the

birth of E to avoid collapse and this point has not been clarified
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(although we expect in this model galaxies to contract at the same epoch

as E because of the same mechanism). Also one does not know why E

should stand in the galactic nucleus : maybe its large mass could serve

to start the initial condensation of the galaxy or its motion in the ga-

laxy would lead it to the center either by gravitational effects (5 1 ) or

(52)because of a specific viscosity generated by annihilation

Assuming the existence of such an object, we will now show

that it behaves in many ways like a quasar. For the sake of definiteness,

we shall consider an object E with mass 108 MO with a radius R = 1 pc.

situated at the center of a galactic nucleus. We shall use data concern-

ing our galaxy for the environment density so that most accreting matter

(53)
is probably in the form of stars . One finds that 2.2 stars (with a

solar mass) are entering into E every year with a velocity 1000 km/sec.

The average particle density < N > in E is 109 antiprotons per cc,

and the average mass density < P > is 10- 15 g per cc.

The characteristics of are well known(2 5 ) . Its density

profile is that of a polytrope with index n = 3. The temperature T

is related to the density P by

T = 1.97 x 107 K - 1/3 (18)
( M c.g.s.

The thermal luminosity is given by

Lth = 1.3 1038 erg/sec. (19)

However, it should be pointed out that this value for Lth may be over-

estimated if large magnetic fields contribute to the pressure near the

surface. If it were left to itself, E would start gravitational col-

lapse when it reaches a critical state corresponding to a central density
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and a radius
-7/2

P 2 18 (M g/cc. (20)c M

Rc(M/Me = 108) 3 x,10 - 2 pc. (21)

(if one assumes E to be made of pure hydrogen).

The energy of Z is then independent of its mass

54
E = -4 x 10 ergs . (22)

c

An important quantity is the evolution time of E, which

can be quite small if Z is not stabilized otherwise, namely

E 1
= - 2 109 - years. (23)

c Lth 0

E is heated by infalling stars which begin to annihilate

when they penetrate antimatter. Their initial velocity is (GM/R)2 = V.

The star surface is heated by annihilation: an energy flux is produced

2which is essentially given by 4 = VN mc where m is the proton mass.

(When V is reduced, this flux becomes of the order of V N mc2 where
s

V is the local sound velocity). The cascade of thermalizing particles

(16)has been analyzed in another context( 16 ) . First X rays are produced, by

the products of annihilation (y, e ), via pair production, Compton effect

and the reactions Y + thermal photon -+ X and e + thermal photon 'X.

These X rays are later on thermalized by Compton effect. Large quhnti-

ties of energy are accumulated near the surface of the star where the

particle density is much larger than N . Two cases are possible which

have been only analyzed grossly and both lead to the same result: either

strong convective motions take place which blow off the star envelope,

or energy is transported by diffusion over a distance of the order of
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the star radius. In that case, the local temperature becomes larger than

10 OK. Once again this leads to a blowing off of the envelope by evapo-

ration.

The long-distance transport of energy in E , in which the

main pressure is radiative, will take place through shock waves. These

shock waves will leave a complicated -pressure distribution resulting into

turbulence. Altogether, the annihilation process appears to be rather com-

plicated and violent and it is very difficult to analyze it in detail. The

only simple relation which can be derived comes from energy balance :

2 2
2 TR n VMO c = < L> . (7)

Here n is the star density around C and < L > the average luminosity,

in general higher than Lth. Many parameters are free here, so that it

is no surprise that the highest known quasar luminosities are easily ob-

tained.

One will not detect the original products of annihilation. Gamma

rays produced by Tn's will be stopped on a short distance by several

processes (pair production upon protons and electrons, Compton effect,

pair production by collision with thermal photons) so that this model does

not contradict the limit set upon annihilation by gamma ray astronomy (4 8 )

The most difficult question that is raised by this model is to

describe the kind of average equilibrium which will take place in E . It

is only locally heated by annihilation in a random way and the energy is

carried mostly by turbulence and shock waves. It would obviously be es-

sential to analyze this kind of processes and see what limitations can be

imposed on the radius (by star penetration) and on the encounter frequency

(by the evolution time of E ). We have not yet done this work because we
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were not able to master the problems of transfer which are involved. Let

us note only a favourable circumstance: strong fluid motions should be

continuously generated, which would tend to stabilize .(36,37)

Another unsolved problem concerns magnetic fileds. It is a

general consensus that annihilation can produce large magnetic fields,

although only preliminary studies of this effect have been made(54
-56)

Large scale magnetic fields can also be present in E since the origin

or be produced by relative motions (including differential rotation).

Things are complicated by the violent events which the model

predicts. Too much local energy generation can result into instabili-

ties, ejection of antimatter, rejection of matter, even disruption of

E (considering the small value of E ). However E will not suffer

(57)fragmentation (  . Despite the nightmarish character such a system may

have for a theoretician, it does not look incompatible with what is ob-

served.

An important new feature of this kind of model concerns the

lifetime of quasars. Typical values of M = 108 M0  and < L > =

1046 ergs/sec. give a lifetime T 10 years. Values of M/MQ up

to 102 times higher are still compatible with the model. This shows

that quasars have been active since the origin of galaxies. The highest

red-shifts of quasars provide therefore an important cosmological in-

formation. Furthermore a strong evolution towards decay is predictea

(58)with the right order of lifetime 5

To conclude, let us now list what relations can be made between

the model and observations.

1) Evolution(58)

2) The validity of the Christmas tree behaviour for compact radio sources
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(refs. 59, 68). The individual flashes corresponding here to a new

star or a new cloud annihilating.

3) The analogy between Seyfert galaxies and quasars. In this model, the

difference is only quantitative. All quasars should be in a galaxy(61)

even if it is only a dwarf one, as one would expect if the ratio between

the masses of matter and antimatter is not far from one.

4) The ejected matter, in the form of dust and gas, has a stellar composi-

tion. Such ejected matter constitutes the atmosphere of E , which

agrees with the characteristics of the emission lines (26 )

5) Multiple absorption red-shifts are probably due to gas ejected by

(62)
radiation pressure and quenched by line-locking

6) Infra-red emission might be due to synchrotron emission by annihilation

electrons in a high magnetic field (6 3 ), but most probably it is due to

external dust. Indeed, such dust should be abundant near a region

where stars explode.

7) The origin of extended radio sources frequently associated with quasars

and of the cosmic electrons radiating in these sources would be ex-

plained in this model as previously suggested by Layzer and Ozernoy(36,37)

Important observations to test the model might come from X-ray

and gamma-ray observations of quasars with a low density central star, if

it turns out that enough lower-energy gamma-rays from annihilation can es-

cape. A cut-off in the energy of these gamma rays could be seen at a

value related to the temperature existing in the annihilation region.
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Abstract.

The examinationf the experimental data concerning the reaction

p + 4He - pions + nuclei shows that the low abundance of 2 D can be

explained only by assuming a low He abundance at the beginning of the

radiative era. This is a completely independant confirmation of the

evasion of neutrons (and antineutrons) from the emulsion before the

end of the epoch where nucleogenesis might have taken place, and leads

to an estimate of the size of the emulsion when T = 1 MeV, L-.104.6 cm.
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In our present understanding of the model of the symmetric

universe, we are led to the following picture, proposed by Omnas (1972)

x further references can be found in the paper quoted

(1) Separation era, during which a partial separation between baryons

and anti baryons takes place, at t <'10 - 5 sec or kT >.350 MeV

(critical temperature of the phase transition) -

(2) annihilation era (t <1600 sec, 350 MeV >.kT > 25 keV). At the

end of the annihilation era, the annihilation pressure becomes

efficient to produce the coalescence

6 1(3) coalescence era (1400 sec < t < 106 years . 25 keV > kT > I eV).

At the end of the coalescence era, the mean free path of the products

of the annihilation become comparable to the size of the emulsion.

During the annihilation era, the size of the emulsion is

governed by the diffusion of nucleons. If we look more closely to the

situation, we can see, as shown by Steigmann (1972) that the main

process is the diffusion of neutrons (at least, as long as there are

neutrons). The only way in which neutrons can be kept in the emulsion

is by neutron electron scattering. However, this can last only as long

as there are black body electrons. As soon as the temperature drops

below (1/2) MeV, the number of free electrons, which goes like

1032.3TMeV 310-(0.25/TMeV) decreases very quickly. If the size of the

emulsion is large enough the neutrons are kept until nucleogenesis

takes place around T% 0.1 MeV. If the size of the emulsion is too
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small, the neutrons are lost (they annihilate at the boundary of the

emulsion), and no nucleosynthesis can take place. From the analysis

of the diffusion process, this seems to be the case.

In the following, we shall consider how the present abundance

of Deuterium can be used as an independant proof that no nucleosynthesis

has taken place, and therefore that neutrons were lost before

nucleosynthesis. The argument is the following :

(1) we consider the nucleosynthesis during the radiative era

(2) we estimate the relevant cross sections

(3) we estimate the maximum abundance of 4He at the end of the

nucleosynthesis era ;

(4) we solve the diffusion problem in order to get an estimate of the

rate of loss of the neutrons. This leads to a correction factor to the

rate of formation of 4He. An estimate of this correction factor, to

match the maximum abundance of 4He leads to an estimate of the maximum

size of the emulsion.

i. Nucleosynthesis during the radiative era.

Let us consider the reactions taking place between nuclei and

antinuclei at the boundaries of the emulsion. Let us assume that we

have only protons and alpha particles. The reaction

p + He--* -pions + 3 nucleons

D + I nucleon

3He 4.3T

leads mainly to the production of nucleons and the destruction of

alpha particles. Half of the nucleons produced are destroyed in flight
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in the regions of anti-matter, either in NN reactions or in Na reactions

(fig. 1). Let us call R the probability of the reaction NN in flight and

(I - R) the probability of the reaction Na in flight. Neglecting provision-

nally the production of Deuterium and Tritium, we have the following

expressions for the rate of reaction :

dp r 1
<av> pp + <Cv> - - R + (1 - R) pa

= - <v>- pa + <av> (1 -R pdt pa p(1

+ <v>a (1 - R aa

By taking a proper average over space, and assuming <p> = <p> ,

<a> = <a> , calling A and v the ratios :

<ov>- <av> -
= aa

<v>- <OV> -
PP pp

we obtain

3  2 2 3 33 3

dp p +3 + 2 Ap + p 2 (-5X2 + ) - 4Ap3

da 2 2 2 53p a + p 2 (p 2) A + a
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In a similar way, we can consider the rate of production of

Deuterium. Estimating that the most important part in the balance equaticr.

for the deuterium arises from the deuterium production, we obtain, P blinrg

the branching ratio in the pa reaction :

Xpa 5
E B (p + - aX)

dD 2 2 )

3 2 2 2 3 33 3
p + 2p a + (pa (-) -+ Ila

It results from the experiments of Barkas et al. (1957), that in the

reaction p - nucleus, 1.3 pion on the average is absorbed in the nucleus,

out of the average 5 pions produced in the annihilation.

3 -
After annihilation, we are left with an He or a T in excited

sates. We shall assume that the final nuclei left are in the same rat..'

as observed by Zaimidagora (1965, 1967) for the pion capture by Hie.

According to the summary given by Koltun (1969), we have the following

ratios :

r'+ He 3  H 3 + ~O 15.8 + 0.8 %

I'4 He 3  H3 + y 6.9 + 0.5 %

'r He 3 + p + 2n 57.8 ± 5.4 %

'li e 3 + D + n 15.9 + 2.5 %

f'f He3  D + n + y 3.6 ± 1.2 %

*t He3 +p + 2n + y ?
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To summarize briefly these datas, assuming that the n can

do the same to 3H as to 3He, we shall accept the following branching

ratios :

p + -t X + n - 3 N + n 60 %

S3 2
p + a X + T + N + D + n 20 %

- 3 3
p + a X + n Y + r 20 %

From these datas, we conclude immediately that very little

He must have been left at the beginning of the radiative era, otherwise

a too large abundance of 2D would have been produced.

2. Estiriate of the cross section and rates of formation.

The <av> includes both the nudlear part and the effect of the

convergence of the wave function for caption at low energy. We have :

2Tn
GV = o v

nucl -2rn

Z 1 Z2 e

with n = . If we compare the two cross sections, and
k v

calculate the ratio

<av>-

<av> -
pp

we have to include the effect of the charge of the a, the effect of

the relative mass and of the relative velocity in the collision.
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Assuming as already suggested by Schatzman (1970) :

anuc pa3.5

nucl PP

we obtain :

<av>--

<av> -
PP

In the same way, we obtain, as an estimate :

<av> -

S= = 56
<av>

pp

With these values, we get the main contribution to the rate of change

of the abundances (for small values of a a nd D)

dp 1 p

da cI

which gives

a = o o

an .

dD XB a
.-. ( -) p

dp 2 p0

which gives :

D = D - B a ( )X



We see that we built the deuterium, whereas we destroy the a's.

Assuming that we start with zero deuterium, we have :

D ao 2 o

where the origin is taken at the end of the nucleosynthesis.

The final concentration (observed presently) gives :

D D n D p
- = 6 or -- = 6-

P Po P Po Po

from which we derive :

o 2 p
P B po o

If we take the value of 6 at the surface of the Earth, as

-4
given by Urey et al., 1932, and Craig, 1961, 6 = 2.10 and with

(2/b) = 10, we obtain :

o -3 po- = 2.10
P- P0 0

If we take the protosolar gas value of Geiss and Reeves (1972),

-5
6 = 3.10 , we obtain :

= 3 . 1 0
- 4

PC P0

The ratio (p/po) is the annihilation ratio between 0.1 M.e.V,

and 1/3 e.V. From the recent work of Aldrovandi, Caser, Omn~s and

Puget (1973),, it is quite clear that most of the annihilation has
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taken place already at 25 k.e.V., and we cannot expect (p/p ) to be

very small. For further calculations, we shall take (:,/ o ) = 0.1, o:

-4
(ao/P ) = 2.10 which represents a depletion factor A at the Lnd of

the nucleosynthesis, compared to the results of Vagoner, Fowler d

Hoyle (1967), of the order of 10- 3

This confirms entirely what has been announced earlier, that

is to say that there is very little 4He left at the end of the epoch

of nucleosynthesis.

3. Rate of loss of the neutrons and 4HL formation.

In order to get an idea of the rate of loss of the neutrons,

we shall consider the diffusion with a time dependant difussion coefficient

to the surface of a sphere with a radius growing with time.

The equation of diffusion :

1 - 2 __ = _
r - r at

with # = 0 at r = a(t), can be solved in the following way :

D dt
Introducing r = x a(t), 0 4 x 4 1 , dT = , we have

a

I a 2 a 32

x 2 x ax a-

A solution is = x exp (- 2 T), from which we derive the time
x

scale of depletion by diffusion towards the boundary :
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dn Trr2D

S- 2 n
dtiff

The equation of conservation of the neutrons becomes :

dn 2rD n p
- n - -- +

dt a 2 T T
n p

We are concerned by the last phase of nucleosynthesis, for kT < I I.e. V.,

for which T increases very quickly to infinity. If we sit.plify the

equation of formation of the a's to a pure neutron capture procgs.

we obtain :

da
- <ov> pn

dt pn

and the number of a's at the end of the nucleogenetic period is :

S2 D

a = <v>pn pn exp I dt' I dt
) n /

We shall simplify the whole problem by assuming that the depletion

factor A can be estimated by the quantity

A eaxp dt)

The average A is obtained in the following way. We calculate the amount

of Helium formed from the temperature T1 where the rate of destruction



4- 3tie (y,n) He becomes negligible (T1 = 0.8 H.e.V.). The concentrations

p and n are propcrtional to the expansion factor to the minus cube,

and we can write :

T IT x - D dt

T I

T' dT

-n
From the estimate of the integral, and writing a = a T-n

o M.e.V.

it is possible to Let an estimate of a
o

The result is not very sensitive to the value of n. With

n = 17/6 (corresponding to the rate of growth during the coalescence

rperiod), a diffusion ccefficient z

D 108.15 -5/2 (0.25/T)
I. e.V. M.e.V.

we obtain for A = 10-3 a maximum value

a < 104.69 for 6 = 2.10 a < 104.64 for 6 = 3.10
0 0

If we consider the formation of 3 e and if we take the abundance ratio

3 -5 4.60
he/il as 10 , we obtain a < 10 . This is quite compatible with the

diffusion length. For a sphere :

D  /2 4.25 -9/4
LD - " M.e.V.
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4. Conclusion.

From this short discussion, we see that the low abundance of

Deuterium is some sort of proof that the neutron loss has actually

taken place before the beginning of the nucleogenesis.

We can then either assume that the diffusion length detaermines

actually the size of the emulsion, and it seems quite possible that

the abundance of the o's was vanishingly small at the end of the

nucleogenesis. Or, we can assume that the abundance of Deuterium and

other light elements results from the nucleogenesis. It then leads to

a determination of the size of the emulsion during the nucleogenesis.

In fact, a small amount of coalescence before the end of the annihilation

period would be enough to increase the size of the emulsion beyond

the diffusion length and put the two determinations in complete agreement.

A final coimment is interesting to make. Since the beginning

of the thecry of the symmetric universe, a number of criticisms have

been made, which have been met with success one after the other. Just

like a puzzle, the pieces have been found to adjust to each other. In the

present case, one has the feeling that the new piece has just matched a

hole in between two pieces. This gives a great confidence for the future

of the unodel.
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Caption to the figures.

Figure I :

Schematic representation of the annihilation at the interface

and the secondary reactions taking place in flight. Only

the main reactions have been plotted following the a N reaction

at the interface. A symmetric figure would have to be drawn,

for the aN reaction.
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Gamma-Ray Background Spectrum and Annihilation Rate

in the Baryon-Symmetric Big-Bang Cosmology

J. L. Puget
Department d'Astrophysique Fundamentale

Observatoire de Meudon, France

The negative results of search for antimatter nuclei in cosmic

rays, imply that if there is symmetry between matter and antimatter

in the universe, each kind must be gathered in separated regions of

galaxy or galaxy cluster size. In such a case, to try to get experimental

information on the problem of baryon symmetry on a cosmological scale,

we have to rely mostly on the observation of annihilation products.

Among the annihilation products are gamma-rays and neutrinos which have

very long mean free path. Neutrinos especially can reach us from

dense regions; Steigman and Strittmatter (1971) used upper limits on

the neutrino flux from space to put upper limits on the annihilation

in Seyfert galaxies. Nevertheless for the diffuse background due to

annihilation on a cosmological scale, gamma-rays are the best test

available because they are easier to detect than neutrinos.

Two kinds of gamma-rays are produced in matter-antimatter annihilation;

0.511 MeV gamma-rays from positron annihilations (4.81 per annihilation);

0

70 MeV gamma-rays from TT decay (3.4 per annihilation). The number of

gamma-rays of each kind is roughly the same, and to compare them as

a possible source of information on the annihilation rate we must look

at their absorption cross-section and also at the background due to

other sources.



- 2 -

The absorption cross sections are respectively 10- 25 and 1.8 10-26 cm2

for 0.5 and 70 Mev gamma-rays; in a dense universe there is a "window"

between 1 MeV and 10 GeV in which gaina-rays observed might come from

a red-shift of about 100 (see Stecker, these proaeedings). The X-ray

background between 40 keV and 1 MeV can be represented by a power law

with a spectral index 2.1, so it is more likely to detect the 70 MeV

annihilation gamma-rays than the 0.5 MeV ones.

These considerations prove that the best direct experimental

test for presence of antimatter on a cosmological scale lies in the

gamma-ray background spectrum between 1 and 70 MeV.

I. Experimental data and red-shifted gamma-rays from annihilation

It has been shown by Stecker, Morgan and Bredekamp (1971) that

the excess of gamma-rays observed above 1 MeV could be explained by

annihilation of ganama-rays coming from high red-shift. They computed

the spectrum (see Stecker, these proceedings) using a simple theoretical

model for the annihilation rate dependence on the red-shift

G,3

and they choose the constant o to fit the data. That leads them

to the conclusion, already found by Steigman (1969) that matter and

antimatter cannot be mixed up in equal quantities in intergalactic

space with a density larger than 1012 cm- .
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The most recent data show a very good agreement with the spectrum

computed by Stecker et al. and leads us to a detailed discussion of

the annihilation rate for red-shifts lower than 100. The theoretical

spectrum below 70 MeV but above some MeV (when absorption is negligible-

is a power law with an index (m - 3.5) (where the annihilation rate

is written v-=~Y;,o(l~) )

for _ -~_ = (n is the so-called critical density of the
crit

Einstein-De Sitter model)

and (m - 3) for S= O

To get a good fit of the data one needs a spectral index of the

order of 3 which means that m must be such that

so one can consider that the annihilation rate will fit the data if it

falls in the range
_34 o.5 s.25 Z o.25

II. Matter-antimatter cosmology: theory

In the recent years, a baryon symmetric cosmology has been developed

in the frame of the big-bang theory of the universe and is summarized

in these proceedings by Omnes and Schatzman. In this model, matter

and antimatter separate in an early stage and lead, at the end of the

coalescence period, which coincides with the recombination time, to

an emulsion of characteristic size given by

L= 0 o > Goo))

( f-1)



and the fluid motions induced by the coalescence process on a scale

of the order of L reach a velocity

I want to discuss now what could happen in such a model after

recombination (which takes place around I4-60oo) to be able to discuss

the problem of the annihilation rate. The following theory has been

worked out by Stecker and Puget, 1972; On Fig. 1 is plotted the

evolution of the characteristic dimension L of the emulsion as a function

of red-shift. At the time of the original paper, the theory of coalescence

in the radiative period has not been worked out completely yet and

we developed a simple model in terms of cloud collisions to put upper

and lower limits on L. Recent work (Aldrovandi et al. (1973)) allows

us to plot the value of L up to the recombination red shift, and the

corresponding fluid velocities induced bj coalescence (Fig. 2). One

can compute the Reynolds number corresponding to those coalescence

motions and see that large scale turbulence is generated near

recombination.

In a matter-antimatter symmetric big-bang, the annihilation electrons

and positrons produce a large flux of X-rays by interaction with the

cosmic black body photons, and these X-rays tend to keep the matter

ionized longer than in a non-symmetric big-bang. Furthermore the

recombination occurs very gradually and ionization remains high near

the boundary regions, as shown on Fig. 3. The viscosity which was

determined by the radiation field drops to the kinematic viscosity which
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is 10 orders of magnitude lower when matter (or antimatter) becomes

neutral and decouples from the radiation field. The large scale fluid

motions become then supersonic. In order to compare the parameters

of the annihilation generated turbulence with the parameters of

primordial turbulence used by Ozernoi et al. (1970, 1971) in their theory

of galaxy formation, we have neglected in a first step the remaining

ionization after a red-shift of - 600. We find a good agreement taking

account of the uncertainties in the theory of generation of turbulence.

I want to underline here the differences between the symmetric

model and the non-symmetric one. Dallaporta and Lucchin (1972) have

shown that it is likely that a primordial turbulence will be dissipated

before recombination. In our model, turbulence is generated near or

even during recombination, so this problem disappears. The question

of dissipation during the phase of supersonic turbulence (before galaxy

formation) and after galaxy formation might also be a very serious one

as shown by Silk (1972). In the original model we just assumed for simplicity

that no coalescence at all takes place after z _600. In fact a source of

motion exists. The ionization near the boundary shown on Fig. 3 which

is due to photoionization collisions implies that the momentum carried

away by these X-rays is transmitted to the matter with a mean free

path which is of the order of the width of the ionized region. We

are in a case where the annihilation pressure generates a surface tension

of the type discussed by Omnes and co-workers (see Omnes in these

proceedings). This surface tension which induces coalescence

during the radiative period will take place also here and even if
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the corresponding increase of size is negligible (which is certainly

true for low z as we shall see later) the fluid motions induced will

compensate at least partially the dissipation of kinetic energy.

The theory of this last period, which includes: galaxy formation

from the density fluctuation induced by shocks in the supersonic

turbulence generated at recombination time; formation of clusters

by breaking of the emulsion in separate clouds; production of

magnetic fields on the boundaries between matter and antimatter,....

is obviously a very complicated problem and it is not possible

at this point to rely on a complete theory of this period to discuss

the annihilation rate.

I shall now change my point of view and keeping in mind the

general picture, make a detailed discussion of the annihilation rate

relying on consistency of arguments and observations on one hand, and

on the other hand on the elements of theory which have been worked

out so far.

III. Annihilation rate at Z4e 1

As we have seen, the theory does not tell us if the regions of

matter and antimatter are of a galaxy cell size or of a galaxy cluster

cell size, so I shall consider the two hypotheses. If dense clusters

contain as much matter as antimatter there will be several contributions

to the annihilation. I shall consider these contributions without

going into the details, considering only the conclusion we shall

be lead to.
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1. Intergalactic gas

Observation of diffuse sources of X-rays in 20 rich clusters shows

that a hot intergalactic gas containing about as much mass as the

galaxies themselves must exist in clusters. This inter-galactic medium

must form an emulsion of matter and antimatter and considering the

magnetic fields produced on the boundaries the diffusion can be

slowed down to a level such that the annihilation rate does not

exceed the value (1).

2. Galaxies - (Antigalaxies) and intergalactic-gas

ihe msti~n velocities of galaxies (antigalaxies) in a rich cluster are large

(up to 103 km/s) and the cross time for a galaxy is smaller than the

age of the universe, so a galaxy could be surrounded by matter or

antimatter with equal probability. Accretion of intergalactic gas

on large galaxies shall produce an annihilation rate

I h " .D o 10

where M is the accreted mass by all the galaxies in one cluster

per year and one sees that it must be smaller than 10 - 4 M to

bring the annihilation rate to the value (1) which seems too small.

3. Galaxy-Antigalaxy collisions

Detailed study of galaxy-antigalaxy collisions have shown that the

annihilated mass is probably of the order of magnitude of MA with

.n v j/ f

KY = 1.25-14
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wherel' is the average collision time for one cluster; any evaluation

of the collision time gives'r 1018 which means again that the

annihilation rate from such a process would give more gamma-rays

than observed.

If we consider cluster size regions, the annihilation takes

place only on boundary regions and even with a dense intergalactic

gas, magnetic fielb slow down enough diffusion to bring the annihilation

rate below the rate (1). (Puget, 1971)

In conclusion we shall make the hypothesis that clusters and

groups of galaxies are of matter only or antimatter only; this gives

us.the present value of L:

Lo = 2.5 1025 cm

and considering that for low z L is changing only with expansion

because for coalescence to take place the fluid motions must be such

that

Vexp is shown in Fig. 2 and it is clear that no/ significant coalescence

can take place for Z 200 because the expansion velocity is then

much larger than the maximum fluid velocity which we can expect.

We shall use L = Lo (1 + Z)-1 up to 1+ Z - 200 and

L = 5 1029 ( 1 + Z)- 17/6 for 1+ Z> 200 (we must nevertheless keep

in mind that this last relation has not been fully justified for

200< 1+ Z < 600 when the regions far from any boundary are neutral).
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IV. Annihilation rate for 1+ z < 100

There is some observational evidence that cluster formation

occurs at rather low z. In our picture the depression of density on

boundary regions becomes deeper and larger and eventually gravity

overcomes expansion and bound clusters are formed. We shall neglect

here this process because other ones like ionizing radiation from

quasars and/or young galaxies for z < 5 also modifies the picture.

Let's study the motion of the plasma. For that purpose we need

to find how the anisotropy and the temperature gradient affect the

motion of the plasma. Physically, due to the importance of Thomson

collisions of the electrons of the plasma with black body photons

and with the X-rays and gamma-rays produced in annihilation, we are

looking at the motion of the plasma on each side of the annihilation

layer at distances much smaller than the mean free path of thermal

photons. Technically, we write the Boltzman equation for the photons

and integrate to get the equations of momentum conservation and

energy conservation, to which we add the equations of motion of the

plasma. These 3 equations have four unknown quantities: the temperature

gradient, the anisotropy of the photon distribution, the velocity

and the density of the plasma. We can eliminate the two first ones

in order to get an equation of motion of the plasma which has to be

combined with the continuity equation:

L

~X°
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where v is the plasma velocity, n the plasma density , f, = <

5 is the fraction of the momentum of the X-rays which is transmitted

to the black body photons, vs is the thermal velocity of the plasma,

- - -. During the radiative period, the second, third

and fifth terms of this equation of motion of the plasma are negligible

for distances smaller or of the order of r - b which

is the distance at which the density gradient extend. IfD is the

characteristic time for slowing down of charged particles by the

radiation field.) The equation is then a simple equation of diffusion

and the solution for n is: L

o

and

The annihilation rate is then given by

vy =- k t I1-&)
L

The fifth term of equation (2) corresponds to the anisotropy of the

photon field inducing a heat flow which dissipates the excess energy

left by X-rays and gamma-rays in the regions where n is larger than

the average no. For X>> it is the dominant term for the motion

of the plasma, but it does not affect in a noticeable way the

annihilation rate.



When (1 + z) becomes lower than 1.4 103, the third term which

is the flux of momentum from X-rays to the plasma, becomes as large

as the fourth term which is thepressure gradient of the plasma, and

must be included in the equation. The annihilation rate is gi Ten by

L

with }t I

1..

For small enough to be negligile compared to 1, A is in fact almost

a constant: 4. 2

this leads to

-3Z [ge
= I7 10 ( It,)

This solution is valid down to 0\1 o6o- . Below that value it

breaks down for two reasons having opposite effects

- L might increase slower than (It ) due to

recombination

- The mean free path of the X-rays produced by the annihilation

electrons and positrons which was equal to X becomes much shorter

due to the large photo-ionization cross-section as shown on Fig.1 A

The equation of motion of the plasma in the vicinity of the

boundary remains the same because of the ionization due to X-rays
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(Fig. 3)* but the momentum left in the plasma per unit time and

unit volume is now proportional to x1 instead of .x 0

( hx is taken equal to the distance from the boundary for which

n /nH = 1 .) Figure 4 shows the density and velocity of the

plasma as a function of distance from the boundary in units of

1/2
Vc = V ( TD/t)/2

The equation giving the annihilation rate has to be solved

numerically. The result is shown on Fig. 5* which gives the

annihilation rate as a function of red-shift and the range given

by relation (1).

Considering the uncertainties of these calculations, the

agreement is as good as can be expected. The major uncertainties

affect the rate for 1 + z < 5 and must not affect very much the gamma-

ray spectrum between 1 and 15 MeV. Furthermore, the gamma-ray flux must

drop above 70 MeV and below 1 MeV so the theoretical spectrum is quite

well defined. If the good agreement of this spectrum with the data

is confirmed by future measurements, a way of checking this model will

be to look at angular fluctuation of the background as a function of

energy. The gamma-rays observed at the energy E come mostly from

a red-shift 1 + z - 70/Ey(Me d the angular fluctuations will be

related to L(l + Z).

-The results given on Fig. 3 and 5 are from preliminary numerical

evaluations; exact numerical computations will be published later.
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Figure Captions

Fig. 1 The different lengths relevant to the problem are plotted

as a function of red-shift.

0 is the mean free path of thermal photons

x (10 percent) the mean free path of X-rays corresponding

to 10 percent ionization rate.

)X (50 percent) the mean free path of X-rays corresponding

to 50 percent ionization rate.

Fig. 2 The velocities relevant to the problem are plotted as

a function of red-shift.

Fig. 3 The ratio of the proton density to the neutral hydrogen

density is given for three values of the red-shift as

a function of the distance from the annihilation layer.

Fig. 4 The density and velocity of the plasma are given as a

function of the distance from the boundary. The unit

for the v scale is v = v ( TD/t) 1 /2

Fig. 5 The annihilation rate is given as function of red-shift.
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DISTORTION OF THE MICROWAVE BLACKBODY BACKGROUND

RADIATION IMPLIED BY THE BARYON-SYMMETRIC

COSMOLOGY OF OMNES AND THE GALAXY

FORMATION THEORY OF STECKER AND PUGET

F.W. Stecker
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NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

and

J.L. Puget
Observatoire de Paris

Meudon, France

One consequence of the baryon-symmetric cosmological

model of Omnes is the continuing annihilation of matter and

antimatter throughout all stages in the evolution of the

universe which can cause a distortion in the microwave black-

body spectrum from a purely thermal spectrum because of

deposition of annihilation energy at redshifts less than

104 and particularly at redshifts less than 103. The theory

of this distortion was first discussed by Zel'dovich and

Sunyaev (1969; see also Sunyaev and Zel'dovich 1970a,b).

They show that because of the varying evolution of the optical

depth of the universe to radiation at various wavelengths,

and because the Compton process conserves photon number and

does not lead to pure thermalization, two different distor-

tions arise in the blackbody spectrum. Distortions in the

Rayleigh-Jeans (v ) portion of the spectrum are due to
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energy deposition at redshifts between 104 and 103 (Zel'dovich,

Illarionov and Sunyaev, 1972). Distortions in the Wien por-

-vtion of the spectrum (-e ) are due to energy deposition at

lower redshifts after the cosmic gas cools to its atomic

state and thermalization does not take place as efficiently.

In order to quantitatively estimate the expected distor-

tions, we define the parameter

9 = E(t) dt (1)

which is a measure of the maximum fraction of the energy

density in the radiation which contributes to the nonthermal

part of the microwave background.

In equation (1), e(t) is the energy density in the

blackbody radiation as a function of time (or redshift z,

where t = t(z)).

It then follows that

q (z)M c dt (2)

where v(z) is the annihilation rate function discussed in

the main paper by Puget (these proceedings).

For the redshift range 600<z<10 , the annihilation rate

is given by

-32 6+1/12 -3 -1 (3)
Yv(z) = 1.7 x 10 (l+z) cm s

vm
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(see Puget, these proceedings). The resulting value of qR-J

affecting the Rayleigh-Jeans part of the spectrum is then

-2q R-J 1.2 x 102 (4)

which is, in fact, an upper limit because part of the energy

goes into large-scale fluid motions. The corresponding

distortion in the Rayleigh-Jeans part of the blackbody spectrum

is of the order of 2 per-cent, well below the observational

uncertainties of about 20 per-cent in the wavelength region

greater than 1 cm.

For the redshift range z < 600, we will adopt the anni-

hilation rate fitting the y-ray observations (i.e. the

largest value consistent with the present observations, see

Puget paper).

-34 6.25 -3 -1
Tv(z) = 10 (l+z) cm s (5)

The resulting value of q affecting the Wien part of the

blackbody spectrum is
-5

qw = 6 x 10- (6)

This may be related to the parameter y used in the cal-

culations of Zel'dovich and Sunyaev, since

y = q/4 = 1.5 x 10-5 (7)

This is well below the observational upper limit on y

set by Zel'dovich of 0.15.

In fact, we expect more distortion than indicated by

equation (7) because of dissipation of turbulence created at
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higher redshifts which feeds energy into the microwave back-

ground below z = 600. To estimate this effect, we have made

a more detailed numerical calculation of the mean gas tempera-

ture as a function of redshift (Stecker, Puget and Bredekamp,

in preparation) and used the relation given by Zel'dovich and

Sunyaev

- kT 1/2
yT = no cH dz --e2 (l+z) (8)

m c

where no is the present mean gas density in the univers,

taken to be x 106 cm 3 , a is the Thomson cross section and

-1 17H is the Hubble constant where H = 6 x 10 s. We theno o

obtain from equation (8) a value of

-4
YT = 2 x 10 - 4 << 0.15 (9)

Sunyaev and Zel'dovich discussed the problem of black-

body distortion due to antimatter annihilation, but they

estimated the annihilation rate without taking account of

limitations due to annihilation pressure on the boundary

regions between matter and antimatter. They therefore,

overestimated the annihilation rate by a large factor (see

Stecker and Puget, 1972).

Our conclusion is that the annihilation rate for our

model of galaxy formation (Stecker and Puget, 1972), while

large enough to provide the turbulence needed to explain

galaxy formation (Stecker and Puget, 1972, Aldrovandi, Caser,
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Omnes and Puget, 1973), does not produce a distortion in

conflict with present observations of the microwave blackbody

radiation.
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INTRODUCTION

In several previous papers you have heard of the development

of a cosmological model which is symmetric in the sense that

exactly half the particles in the Universe are, in fact, anti-

particles. You have also heard of some of the observational

consequences of such a model, particularly as they relate to

gamma-ray astronomy. The conclusions the previous speakers have

reached is that it is possible to build such a model without

violating the many constraints set by observation. I am much less

convinced than they of this conclusion and have in the past

addressed myself to some of the problems posed by a "symmetric"

cosmology. Although, I think we are all agreed that this subject

is in a rather early stage of development and that there are many,

as yet unsolved, problems, the subject is sufficiently important

to justify our continuing interest in it.

In these remarks, I wish to adopt an approach which is

different from that of the previous speakers. Rather than asking

if a symmetric cosmological model can be constructed which is

consistent with observations, I wish to ask the question, "If the

Universe does indeed contain equal amounts of matter and anti-

matter, how would we know about it?" There are several straight-

forward ways in which antimatter could signal its presence to us

and I shall discuss them shortly. As we shall see, there is no

evidence whatever for large amounts of antimatter in the Universe.

From that we may reach one of two conclusions. Either the Universe



is not symmetric, or if it is, the ubiquitous antimatter prefers

to remain clandestine. If, indeed, we adopt the latter conclusion,

then the limits set by observations set severe restraints on the

possible cosmological models. The conclusion that appears to

emerge is that matter and antimatter must be separated on the

scale of clusters of galaxies if the Universe really is symmetric.

Much of what I am going to present has already appeared in print

and so I shall limit myself to a general discussion, omitting the

details which may be found in the original papers.(1-4)

DIRECT EVIDENCE

In principle it is easy to detect the.presence of antimatter.

You travel to where you suspect a concentration of antimatter,

put your detector down (the most rudimentary device will do) and

watch. If your detector disappears then you'd better get out of

there fast; you've detected antimatter. Seriously though, just

such experiments have in fact been performed within the solar

system via the manned flights to the Moon and the unmanned probes

to Venus. So, now we know, as we suspected with very good reason,

that the Moon and Venus are made of ordinary matter. Even before

the days of space flights we had pretty good reason to believe the

solar system was all made of ordinary matter: The solar wind

which sweeps out from the Sun past the planets acts as a probe

just as our detector would.

Unfortunately, we are not likely to learn very much
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about a sizable part of our Galaxy by this method. However, we

are fortunate that, rather than having to travel around ourselves,

there are particles which oblige by coming to us: the cosmic rays.

Now, unfortunately, the cosmic rays give us no information of

their sources since (except for the very highest energy cosmic

rays) they are tied to the magnetic field and do not travel in

straight lines. So, we cannot be sure of what region of space we

are sampling when we examine the cosmic rays. However, we can be

certain that, despite extensive searches, no antinucleus has ever

been found in the cosmic rays. Now, at some level ("-I part in -.

10 ) we would expect to detect secondary antiprotons in the cosmic

rays. The secondary production of antihelium or heavier antinuclei

in collisions between the cosmic rays and the interstellar gas will

be down by many orders of magnitude. These antinuclei would

provide, if detected, clear evidence that somewhere in the Galaxy

(Universe?) there were large amounts of antimatter. Evenson (5) has

set limits to the fraction of helium nuclei which are antihelium.

No antihelium nucleus has been found and at the 95% confidence level

he finds limits for the rigidity range 1-10 GV,1l x 10-3 and for

the range 10-25 GV, Z8 x 10-2 . For heavier antinuclei, limits at

the 95% confidence level have been set by Golden et. al. (6) for

rigidities 4-125 GV, <5 x 10-3 and by Buffington et. al. (7) for

rigidities < 33GV they set < 2 x 10 and in the range 33-100 GV

-2their limit is <2 x 10 - 2

As I emphasized, we can't be sure where the observed cosmic

rays come from. From the ratio of light (Li, Be, B) nuclei to



medium (C, N, 0) nuclei we know that the cosmic rays must be able

to travel several hundred parsecs in a few million years. So the

cosmic rays we sample probably come from a volume whose typical

dimension is roughly a few hundred parsecs. They may in fact

come from a much larger volume. The isotropy of the cosmic rays,

the smoothness of the distribution of galactic, non-thermal, radio

emission, the relative constancy of the cosmic ray flux at Earth

over periods as long as 4.5 billion years all indicate the cosmic

rays we observe fill a volume comparable in size to and perhaps

even greater than our Galaxy. The lack of antimatter in the cosmic

rays gives us good evidence that every second star in our Galaxy

is not made of antimatter. Indeed, the limits on antinuclei in

the cosmic rays are already so low that even if a small fraction

(say, a percent or so) of them were extragalactic in origin, they

would be telling us that very few, if any, extragalactic systems

could be made of antimatter.

In summary then, the cosmic rays provide us with the only

practical means of sampling the Universe outside our solar system.

The evidence is straightforward: no antinuclei have ever been

found in the cosmic rays. Therefore some region of space contains

very little, if any, antimatter. Unfortunately we just can't be

certain what region of space it is.

INDIRECT EVIDENCE

When matter and antimatter meet, they annihilate. The
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annihilation products are typically pions; roughly 5-6 charged

and neutral pions in a typical annihilation. The charged pions

decay into muons with the emission of a muon neutrino; the

neutral pions decay most often into two gamma-rays. The muons

themselves decay into electrons (and positrons) with the emission

of both an electron neutrino and a muon neutrino. The end

products of a typical annihilation are high energy electron-

positron pairs, gamma rays and two kinds of neutrinos. We may

therefore hope to learn of the presence of antimatter indirectly

by detecting the products of its annihilation with ordinary

matter. Now the electron-positron pairs will probably not travel

very far from where they are created either because they will be

tied to magnetic fields or because they will scatter on any photons

present (starlight, infra-red, black-body, etc.) and lose energy

rapidly. Furthermore, we know there exist mechanisms for accelerating

electrons and positrons to high energy in any case (pulsars). Hence

the electron-positron component of annihilation is not likely to

provide us with any unambiguous information about the presence of

antimatter.

Neutrinos, of course are very difficult to detect. As a result,

large fluxes are required and hence the limits one might set are

not very interesting. A major fraction of the matter in the Universe

would have to be annihilating before a detectable flux of neutrinos

would be produced. If that were the case there would be other, more

immediate, consequences. Of course, a strong, nearby source (e.g.

the Galactic center) might produce a detectable flux of neutrinos,



but there too we'd expect other, more obvious effects (e.g. gamma

ray emission). For a discussion of these questions see reference

(3).

Finally, we come to the gamma rays produced in annihilation.

It is of course most appropriate that they be discussed at this

conference. A typical annihilation produces a spectrum of gamma

rays extending from several tens of MeV to several hundred MeV.

On average, 3-4 gammas are produced per annihilation. Observations

of -100 MeV gamma rays then enable us to place limits on the

amount of contemporaneous annihilation.

The OSO-3 observations (8) of .v100 MeV gamma rays indicates

a Galactic component superimposed upon an isotropic, presumably,

extragalactic component. From their results we may draw the

following conclusions (see references (1), (2) and (4) for details).

If there is a cool, neutral intergalactic gas which is symmetric

-11 -3
its density could be no larger than n - 10 cm I remind you

-7 -3
that the average density of matter in galaxies is ~10 cm ;

hence such a cool, intergalactic gas would constitute a minor

component of our Universe. For a hot, ionized intergalactic gas

we find that if it is symmetric, then its density must be low

( / 910 cm-3). If, in fact, there is a hot, intergalactic gas

whose density is close to the critical density, then the fraction

of it which could be mixed matter and antimatter would be less than

one part in 108 . Thus, either such a gas is not symmetric, or it

maintains very well separated regions of matter and antimatter.

While on the subject of intergalactic gas, it is worth pointing
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out that the Coma cluster of galaxies has been detected as an

x-ray source(9) whose spectrum is interpreted as thermal

bremsstrahlung radiation from a hot intracluster gas. If this

interpretation is correct, then from the lack of gamma rays

from Coma, we can say that less than one part in 104 of that

gas is antimatter.

The observations of the Galactic, gamma ray component

indicates an annihilation rate per interstellar hydrogen atom
- 2 5  -1of less than 10 see . If, in fact, these gamma rays are

interpreted as annihilation products, then we can set the

following limits on the antimatter component in the Galaxy: If

the annihilation occurs in interstellar clouds then less than

one particle in 1016 is an antiparticle; If the annihilation

occurs in the intercloud medium the limits are less than one in

1012. Indeed, it is worth pointing out that an antiparticle will

only survive -30 years in an interstellar cloud and -300,000

years in the intercloud medium; both times are very short compared

to the age of the Galaxy ( 1010years). Hence, it is clear that

any model which requires the Galaxy to be symmetric must find an

extremely efficient mechanism which keeps large amounts of matter

and antimatter very well separated over long periods of time. The

most straightforward interpretation of course is that the Galaxy

probably contains no macroscopic amounts of antimatter.

Finally a word about gamma ray sources. There have been no

detections of extragalactic gamma ray sources at about the level

of -10-5 photons/cm2/see. If we wish to use annihilation as an



- 9-

energy source for some of the more spectacular extragalactic

objects (e.g. QSO's, Seyfert galaxies, radio galaxies, etc.) then

we predict that they would be gamma ray sources. The lack of

detections of any of them as sources sets severe restraints on

such models. Either annihilation has nothing to do with these

sources or, somehow, the gamma rays are absorbed at the source.

This latter suggestion is not unreasonable. However, it should

be remembered that twice as much energy is released in gamma rays

as in electron-positron pairs in a typical annihilation. Then we

must inquire into the effect on the source if these gamma rays

are to be absorbed. Will the absorption result in re-radiation

in another part of the spectrum? Can such a model be made

consistent with all observations?

CONCLUSIONS

We have been disucssing the means of detecting the presence

of antimatter in the Universe. We have seen there are several,

straightforward observational tests and all have, thus far, proved

negative. The most straightforward interpretation of these

results is that the Universe is, in fact, not symmetric. Of course,

it is possible the Universe is symmetric but the matter and anti-

matter are well separated from each other. Choosing between these

two possibilities of course must be a personal decision. Perhaps,

in making this decision, we should all bear in mind a quotation

which sits, framed, on the desk of William A. Fowler at Caltech.
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He attributes it to, "Proverbs for Graduate Students, c.1933".

It reminds us that, "The terrible tragedies of science are the

horrible murders of beautiful theories by ugly facts".

Note: In the discussion following my talk, D. Clayton of Rice

suggested that we search for the evidence of annihilation by

looking for the 1 BeV gamma ray line formed when nucleon-anti-

nucleon annihilate directly into two gammas. This purely

electromagnetic channel should occur but only very infrequently

compared to the strong interaction channels via mesons. A

rough estimate indicates only one in --10 - 106 annihilations

will be of the two gamma type. The two gamma annihilation has

been searched for, unsuccessfully in several experiments (P.

Nemethy, 1973 Private Communication). As a result I don't expect

a detectable " 1 BeV annihilation line even if all the observed

-' 100 MeV gammas are from annihilation.
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